Muutke küpsiste eelistusi

Cooperative Control Design: A Systematic, Passivity-Based Approach 2011 [Kõva köide]

  • Formaat: Hardback, 210 pages, kõrgus x laius: 235x155 mm, kaal: 494 g, XIV, 210 p., 1 Hardback
  • Sari: Communications and Control Engineering
  • Ilmumisaeg: 21-Jun-2011
  • Kirjastus: Springer-Verlag New York Inc.
  • ISBN-10: 1461400139
  • ISBN-13: 9781461400134
  • Kõva köide
  • Hind: 150,61 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 177,19 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Hardback, 210 pages, kõrgus x laius: 235x155 mm, kaal: 494 g, XIV, 210 p., 1 Hardback
  • Sari: Communications and Control Engineering
  • Ilmumisaeg: 21-Jun-2011
  • Kirjastus: Springer-Verlag New York Inc.
  • ISBN-10: 1461400139
  • ISBN-13: 9781461400134
Cooperative Control Design: A Systematic, Passivity-Based Approach discusses multi-agent coordination problems, including formation control, attitude coordination, and synchronization. The goal of the book is to introduce passivity as a design tool for multi-agent systems, to provide exemplary work using this tool, and to illustrate its advantages in designing robust cooperative control algorithms. The discussion begins with an introduction to passivity and demonstrates how passivity can be used as a design tool for motion coordination. Followed by the case of adaptive redesigns for reference velocity recovery while describing a basic design, a modified design and the parameter convergence problem. Formation control is presented as it relates to relative distance control and relative position control. The coverage is concluded with a comprehensive discussion of agreement and the synchronization problem with an example using attitude coordination.

Introducing passivity as a design tool for multi-agent systems, this book provides a unified framework for multi-agent coordination problems and discusses numerous related factors such as formation control, attitude coordination, and synchronization.
1 Introduction
1(18)
1.1 What Is Cooperative Control?
1(3)
1.2 What Is in This Book?
4(2)
1.3 Notation and Definition
6(2)
1.4 Basic Graph Theory
8(5)
1.5 Passivity and Passivity-preserving Structures
13(6)
2 Passivity As a Design Tool for Cooperative Control
19(32)
2.1 Introduction
19(1)
2.2 Problem Statement
19(2)
2.3 The Passivity-based Design Procedure
21(3)
2.4 Stability Results
24(4)
2.5 Application to the Agreement Problem
28(1)
2.6 Position-based Formation Control As a Shifted Agreement Problem
29(7)
2.6.1 Design Example
31(3)
2.6.2 A Simulation Example
34(2)
2.7 Distance-based Formation Control
36(8)
2.7.1 Passivity-based Design
36(6)
2.7.2 Existence and Uniqueness of a Formation Shape
42(2)
2.8 Distance-based or Position-based?
44(4)
2.9 Summary
48(1)
2.10 Notes and Related Literature
48(3)
3 Adaptive Design for Reference Velocity Recovery: Internal Model Approach
51(20)
3.1 Introduction
51(1)
3.2 Why Adaptation?
52(1)
3.3 Internal Model Approach: The Basic Design
53(7)
3.4 Design Examples for Distance-based Formation Control
60(3)
3.4.1 Constant Reference Velocity
60(1)
3.4.2 Motivating Example for the Augmented Design
61(2)
3.5 The Augmented Design
63(4)
3.5.1 Motivating Example Revisited
66(1)
3.6 When There Is No Leader
67(4)
4 Adaptive Design for Reference Velocity Recovery: Parameterization Approach
71(22)
4.1 Introduction
71(2)
4.2 The Basic Design
73(2)
4.3 Parameter Convergence
75(3)
4.4 The Augmented Design
78(3)
4.5 Application to Gradient Climbing in Formation
81(8)
4.5.1 Reference Velocity Assignment by the Leader
83(4)
4.5.2 Gradient Climbing in Formation
87(1)
4.5.3 Simulation Results
88(1)
4.6 Summary
89(1)
4.7 Notes
90(3)
5 Attitude Coordination Without Inertial Frame Information
93(16)
5.1 Introduction
93(1)
5.2 Kinematic Equation of Attitude Error
94(1)
5.3 Passivity-based Group Attitude Agreement
95(4)
5.4 Other Representations of SO(3)
99(2)
5.5 Attitude Coordination in the Plane
101(2)
5.6 Adaptive Design for Reference Angular Velocity Recovery
103(1)
5.7 Simulation Results
104(2)
5.7.1 Nonadaptive Design
104(1)
5.7.2 Adaptive Design
105(1)
5.8 Summary
106(1)
5.9 Related Literature
107(2)
6 The Agreement of Euler-Lagrange Systems
109(22)
6.1 Introduction
109(1)
6.2 The Nominal System
110(2)
6.3 The Uncertain System
112(3)
6.4 A Preliminary Adaptive Design
115(2)
6.5 Design 1: Adding a Cross Term
117(5)
6.6 Design 2: Feedforward of the External Feedback
122(7)
6.7 Summary
129(2)
7 Synchronized Path Following
131(16)
7.1 Introduction
131(1)
7.2 Path-following Design and Synchronization
132(1)
7.3 Passivity-based Designs for Synchronization
133(5)
7.3.1 Design 1: Without Path Error Feedback
133(1)
7.3.2 Design 2: With Path Error Feedback
134(4)
7.4 Design Example
138(7)
7.4.1 Agent Dynamics
138(1)
7.4.2 Trajectory Generation
139(1)
7.4.3 Preliminary Backstepping Design
140(2)
7.4.4 Adaptive Design to Estimate Reference Velocity
142(1)
7.4.5 Saturation in Thrust
143(2)
7.5 Summary
145(1)
7.6 Notes
146(1)
8 Cooperative Load Transport
147(18)
8.1 Introduction
147(1)
8.2 Problem Formulation
148(2)
8.3 Decentralized Control With Reference Velocity
150(2)
8.4 Decentralized Control Without Reference Velocity
152(2)
8.5 Experiments
154(4)
8.5.1 Hardware
154(1)
8.5.2 Implementation
154(4)
8.6 Summary
158(1)
8.7 Notes
159(6)
9 Caveats for Robustness
165(14)
9.1 Introduction
165(1)
9.2 Instability due to Switching Topology
166(4)
9.2.1 Example
166(1)
9.2.2 Comparison with First-order Agent Models
167(2)
9.2.3 When is Stability Maintained?
169(1)
9.3 Parametric Resonance
170(5)
9.3.1 Example
170(2)
9.3.2 Coupled Mathieu Equations
172(1)
9.3.3 Fast Varying Perturbation
173(1)
9.3.4 Slowly Varying Perturbation
174(1)
9.4 Unmodeled Dynamics
175(2)
9.5 Summary
177(2)
A Proofs
179(10)
A.1 Proof of Corollary 3.2
179(1)
A.2 Proof of Corollary 3.3
180(1)
A.3 Proof of Lemma 4.2
180(2)
A.4 Proof of Theorem 5.2
182(2)
A.5 Proof of Proposition 8.1
184(1)
A.6 Proof of Proposition 8.2
185(1)
A.7 Proof of Corollary 8.3
186(1)
A.8 Proof of Theorem 9.1
186(3)
B Technical Tools Used in the Book
189(12)
B.1 Schur Decomposition
189(1)
B.2 Invariance Principle [ 69, Theorem 4.4]
189(1)
B.3 Barbalat's Lemma
190(1)
B.4 Proposition 2.44 in [ 119]
190(1)
B.5 Nested Matrosov Theorem [ 85, Theorem 1]
191(1)
B.6 Lemma 4.7 in [ 69]
191(1)
B.7 Theorem 4.19 in [ 69]
192(1)
B.8 Proposition 2 in [ 65]
192(1)
B.9 Theorem 10.4 in [ 69]
192(1)
B.10 Theorem 3.4.11 in [ 62]
193(1)
B.11 Summary of Example 11.14 in [ 69]
193(1)
B.12 Rigid Body Attitude and Its Parameterizations
194(3)
B.12.1 Rigid Body Attitude
194(1)
B.12.2 Parameterizations of Attitude Matrix
195(2)
B.13 Rigid Body Kinematics
197(2)
B.14 Rigid Body Dynamics
199(2)
Index 201(2)
References 203