Muutke küpsiste eelistusi

Data Modeling Made Simple: A Practical Guide for Business and Information Technology Professionals [Pehme köide]

  • Formaat: Paperback / softback, 134 pages, kõrgus x laius: 260x180 mm, tables & charts
  • Ilmumisaeg: 15-Jun-2007
  • Kirjastus: Technics Publications LLC
  • ISBN-10: 0977140008
  • ISBN-13: 9780977140008
Teised raamatud teemal:
  • Pehme köide
  • Hind: 30,66 €*
  • * saadame teile pakkumise kasutatud raamatule, mille hind võib erineda kodulehel olevast hinnast
  • See raamat on trükist otsas, kuid me saadame teile pakkumise kasutatud raamatule.
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 134 pages, kõrgus x laius: 260x180 mm, tables & charts
  • Ilmumisaeg: 15-Jun-2007
  • Kirjastus: Technics Publications LLC
  • ISBN-10: 0977140008
  • ISBN-13: 9780977140008
Teised raamatud teemal:
Acknowledgements i
Foreword iii
Introduction v
What is a Data Model?
7(4)
What is So Special About Data Models?
11(8)
Communication
11(2)
Formalization
13(1)
Scope
14(2)
Focus
16(3)
What are Entities?
19(8)
Independent
20(1)
Dependent
21(6)
What are Data Elements?
27(6)
Domain
28(1)
Keys
29(4)
What are Relationships?
33(10)
Cardinality
35(2)
Recursion
37(3)
Identifying and Non-Identifying Relationships
40(1)
Relationship Labels
41(2)
What Makes a Definition Great?
43(4)
Clarity
44(1)
Completeness
44(1)
Accuracy
45(2)
What is the Subject Area Model?
47(8)
Business Subject Area Model (BSAM)
48(3)
Application Subject Area Model (ASAM)
51(2)
Comparison Subject Area Model (CSAM)
53(2)
What is the Logical Data Model?
55(26)
Normalization
55(2)
Starting with Chaos
57(3)
First Normal Form (1NF)
60(8)
Second Normal Form (2NF)
68(3)
Third Normal Form (3NF)
71(3)
Abstraction
74(7)
What is the Physical Data Model?
81(24)
Denormalization
81(12)
Surrogate Keys
93(2)
Indexing
95(1)
Partitioning
96(1)
Views
97(2)
Dimensionality
99(6)
What is the Best Approach to Build the Models?
105(6)
Purpose + Audience = Deliverables
105(2)
Deliverables + Resources + Time = Approach
107(4)
How Do I Validate a Data Model?
111(16)
How Well Does the Model Capture the Requirements?
113(3)
How Complete is the Model?
116(1)
How Structurally Sound is the Model?
117(2)
How Well Does the Model Leverage Generic Structures?
119(1)
How Well Does the Model Follow Naming Standards?
120(1)
How Well Has the Model Been Arranged for Readability?
121(1)
How Good are the Definitions?
122(1)
How Well Has the Real World Context Been Incorporated?
123(1)
How Consistent is the Model with the Enterprise?
124(1)
How Well Does the Metadata Match the Data?
125(2)
Top 3 Most Frequently Asked Questions
127(4)
How Do I Keep My Modeling Skills Sharp?
127(1)
What is the Best Data Modeling Tool?
128(1)
What is the Future Role of the Data Modeler?
128(3)
Suggested Reading 131(1)
Books 131(1)
Web Sites 131