|
|
1 | (22) |
|
|
3 | (20) |
|
|
3 | (2) |
|
|
5 | (2) |
|
Importance of the distinction |
|
|
7 | (4) |
|
|
11 | (7) |
|
Overview of research design |
|
|
18 | (1) |
|
|
19 | (4) |
|
|
23 | (98) |
|
Definitions of design and data modeling |
|
|
25 | (8) |
|
Design in information systems |
|
|
25 | (2) |
|
|
27 | (3) |
|
Definitions of data modeling |
|
|
30 | (3) |
|
Beliefs about the database design process |
|
|
33 | (30) |
|
A model of the database design process |
|
|
34 | (6) |
|
|
40 | (2) |
|
|
42 | (2) |
|
|
44 | (8) |
|
|
52 | (2) |
|
|
54 | (3) |
|
|
57 | (1) |
|
External schema specification |
|
|
58 | (1) |
|
|
59 | (1) |
|
|
60 | (3) |
|
Comparison with Lawson's model |
|
|
63 | (26) |
|
Lawson's characteristics of design |
|
|
63 | (1) |
|
|
63 | (5) |
|
|
68 | (8) |
|
|
76 | (11) |
|
|
87 | (2) |
|
Studies of human factors in data modeling |
|
|
89 | (6) |
|
|
90 | (1) |
|
|
91 | (1) |
|
|
92 | (1) |
|
|
92 | (1) |
|
Generalizing the findings |
|
|
93 | (1) |
|
|
94 | (1) |
|
What the thought-leaders think |
|
|
95 | (26) |
|
|
95 | (1) |
|
|
96 | (2) |
|
|
98 | (2) |
|
|
100 | (17) |
|
|
117 | (4) |
|
|
121 | (202) |
|
|
123 | (24) |
|
|
123 | (1) |
|
Research question and sub-questions |
|
|
123 | (2) |
|
Research design - overview |
|
|
125 | (7) |
|
Data collection and management |
|
|
132 | (4) |
|
|
136 | (4) |
|
|
140 | (7) |
|
|
147 | (36) |
|
|
147 | (1) |
|
|
148 | (1) |
|
|
149 | (2) |
|
The Scope and Stages questionnaire |
|
|
151 | (2) |
|
|
153 | (5) |
|
|
158 | (1) |
|
|
158 | (18) |
|
Discussion and conclusions |
|
|
176 | (7) |
|
How practitioners describe data modeling |
|
|
183 | (14) |
|
Introduction and objectives |
|
|
183 | (1) |
|
|
184 | (1) |
|
|
185 | (2) |
|
|
187 | (1) |
|
|
188 | (6) |
|
|
194 | (3) |
|
Characteristics of data modeling |
|
|
197 | (28) |
|
Introduction and objectives |
|
|
197 | (1) |
|
|
198 | (1) |
|
|
198 | (4) |
|
The Characteristics of Design questionnaire |
|
|
202 | (1) |
|
|
203 | (2) |
|
|
205 | (1) |
|
|
206 | (9) |
|
|
215 | (7) |
|
Discussion and conclusions |
|
|
222 | (3) |
|
Diversity in conceptual data modeling |
|
|
225 | (40) |
|
|
225 | (1) |
|
|
226 | (1) |
|
|
227 | (5) |
|
|
232 | (2) |
|
|
234 | (4) |
|
|
238 | (1) |
|
|
239 | (16) |
|
Coda: The real-world solution |
|
|
255 | (1) |
|
|
256 | (9) |
|
Diversity in logical data modeling |
|
|
265 | (38) |
|
|
265 | (2) |
|
|
267 | (1) |
|
|
268 | (2) |
|
|
270 | (1) |
|
|
271 | (3) |
|
|
274 | (1) |
|
|
275 | (17) |
|
|
292 | (11) |
|
|
303 | (20) |
|
|
303 | (1) |
|
Research design: An indicator of style |
|
|
304 | (2) |
|
|
306 | (1) |
|
|
307 | (1) |
|
|
308 | (2) |
|
|
310 | (1) |
|
|
311 | (9) |
|
|
320 | (3) |
|
Part IV - Synthesis and conclusions |
|
|
323 | (32) |
|
Synthesis and conclusions |
|
|
325 | (30) |
|
|
325 | (1) |
|
Answering the sub-questions |
|
|
326 | (13) |
|
An alternative perspective |
|
|
339 | (2) |
|
Generalizing the findings |
|
|
341 | (2) |
|
|
343 | (7) |
|
|
350 | (5) |
References, Appendix & Index |
|
355 | (2) |
References |
|
357 | (24) |
Appendix - Studies of human factors in data modeling |
|
381 | (14) |
Index |
|
395 | |