Muutke küpsiste eelistusi

Data Science in Engineering, Volume 9: Proceedings of the 40th IMAC, A Conference and Exposition on Structural Dynamics 2022 2022 ed. [Pehme köide]

Edited by , Edited by
  • Formaat: Paperback / softback, 156 pages, kõrgus x laius: 279x210 mm, kaal: 420 g, 109 Illustrations, color; 15 Illustrations, black and white; VIII, 156 p. 124 illus., 109 illus. in color., 1 Paperback / softback
  • Sari: Conference Proceedings of the Society for Experimental Mechanics Series
  • Ilmumisaeg: 06-Jul-2023
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3031041240
  • ISBN-13: 9783031041242
Teised raamatud teemal:
  • Pehme köide
  • Hind: 169,14 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 198,99 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 156 pages, kõrgus x laius: 279x210 mm, kaal: 420 g, 109 Illustrations, color; 15 Illustrations, black and white; VIII, 156 p. 124 illus., 109 illus. in color., 1 Paperback / softback
  • Sari: Conference Proceedings of the Society for Experimental Mechanics Series
  • Ilmumisaeg: 06-Jul-2023
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3031041240
  • ISBN-13: 9783031041242
Teised raamatud teemal:
Data Science in Engineering, Volume 9:  Proceedings of the 40th IMAC, A Conference and Exposition on Structural Dynamics, 2022, the nineth volume of nine from the Conference brings together contributions to this important area of research and engineering.  The collection presents early findings and case studies on fundamental and applied aspects of Data Science in Engineering, including papers on:





















Novel Data-driven Analysis Methods Deep Learning Gaussian Process Analysis Real-time Video-based Analysis Applications to Nonlinear Dynamics and Damage Detection High-rate Structural Monitoring and Prognostics
Chapter
1. Model Updating for Nonlinear Dynamic Digital Twins Using Data-Based Inverse Mapping Models.
Chapter
2. Deep Reinforcement Learning for Active Structure Stabilization.
Chapter
3. Estimation of Structural Vibration Modal Properties Using a Spike-Based Computing Paradigm.
Chapter
4. Environmental-Insensitive Damage Features Based on Transmissibility Coherence.
Chapter
5. Transmittance Anomalies for Model-Based Damage Detection with Finite Element Generated Data and Deep Learning.
Chapter
6. Machine Learning based Condition Monitoring with Multibody Dynamics Models for Gear Transmission Faults.
Chapter
7. Structural Damage Detection Framework Using Metaheuristic Algorithms and Optimal Finite Element Modeling.
Chapter
8. On Aspects of Geometry in SHM and Population-Based SHM.
Chapter
9. A Robust PCA-based Framework for Long-Term Condition Monitoring of Civil Infrastructures.
Chapter
10. Data-Driven Parameter Identification for Turbomachinery Blisks.
Chapter
11. Classification of Rail Irregularities from Axle Box Accelerations using Random Forests and Convolutional Neural Networks.
Chapter
12. Development of a Surrogate Model for Structural Health Monitoring of a UAV Wing Spar.
Chapter
13. On a Description of Aeroplanes and Aeroplane Components using Irreducible Element Models.
Chapter
14. Input Estimation of Four-DOF Nonlinear Building Using Probabilistic Recurrent Neural Network.
Chapter
15. Simulation-Based Damage Detection for Composite Structures with Machine Learning Techniques.
Chapter
16. Synthesizing Dynamic Time-series Data for Structures Under Shock Using Generative Adversarial Networks.
Chapter
17. Multi-Layer Input Deep Learning Applied to Ultrasonic Wavefield Measurements.
Ramin Madarshahian, Company: Kount, an Equifax company, ID, USA;  Francois Hemez, Lawrence Livermore National Laboratory, Livermore, CA, USA