Muutke küpsiste eelistusi

Dependability Modelling under Uncertainty: An Imprecise Probabilistic Approach 2008 ed. [Kõva köide]

  • Formaat: Hardback, 140 pages, kõrgus x laius: 235x155 mm, kaal: 454 g, 68 Illustrations, black and white; XVI, 140 p. 68 illus., 1 Hardback
  • Sari: Studies in Computational Intelligence 148
  • Ilmumisaeg: 20-Aug-2008
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 354069286X
  • ISBN-13: 9783540692867
Teised raamatud teemal:
  • Kõva köide
  • Hind: 95,02 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 111,79 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Hardback, 140 pages, kõrgus x laius: 235x155 mm, kaal: 454 g, 68 Illustrations, black and white; XVI, 140 p. 68 illus., 1 Hardback
  • Sari: Studies in Computational Intelligence 148
  • Ilmumisaeg: 20-Aug-2008
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 354069286X
  • ISBN-13: 9783540692867
Teised raamatud teemal:

Mechatronic design processes have become shorter and more parallelized, induced by growing time-to-market pressure. Methods that enable quantitative analysis in early design stages are required, should dependability analyses aim to influence the design. Due to the limited amount of data in this phase, the level of uncertainty is high and explicit modeling of these uncertainties becomes necessary.

This work introduces new uncertainty-preserving dependability methods for early design stages. These include the propagation of uncertainty through dependability models, the activation of data from similar components for analyses and the integration of uncertain dependability predictions into an optimization framework. It is shown that Dempster-Shafer theory can be an alternative to probability theory in early design stage dependability predictions. Expert estimates can be represented, input uncertainty is propagated through the system and prediction uncertainty can be measured and interpreted. The resulting coherent methodology can be applied to represent the uncertainty in dependability models.



This work introduces new uncertainty-preserving dependability methods for early design stages. It is further shown that Dempster-Shafer theory can be an alternative to probability theory in early design stage dependability predictions.

1 Introduction 1
1.1 Thesis Aims
3
1.2 Overview
3
2 Dependability Prediction in Early Design Stages 7
2.1 The Mechatronic Project Cycle and Its Demand on Dependability Prediction
7
2.1.1 The V-Model: A Mechatronic Process Model
9
2.1.2 The Mechatronic Dependability Prediction Framework and the Integration of Dependability into the V-Model
9
2.2 Dependability in an Early Design Stage
12
2.3 Definitions on Dependability, Reliability and Safety
14
2.3.1 Basic Definitions of Elements in Dependability Modeling
14
2.3.2 Dependability and Its Attributes
16
2.3.3 Means to Attain Dependability
17
2.4 Boolean System Models
17
3 Representation and Propagation of Uncertainty Using the Dempster-Shafer Theory of Evidence 21
3.1 Types and Sources of Uncertainty
21
3.2 The ESReDA Framework on Uncertainty Modeling
24
3.3 The Dempster-Shafer Theory of Evidence
28
3.3.1 Dempster-Shafer Theory in Dependability Modeling
28
3.3.2 Foundations
29
3.3.3 An Illustrative Example
32
3.4 Aggregation
34
3.5 Dependency
36
3.5.1 The Concept of Copulas
37
3.5.2 Copula Types
38
3.5.3 Applying Copulas to Model Joint Imprecise Distributions
40
3.6 Propagation through System Functions
41
3.7 Measures of Uncertainty
44
3.8 Sensitivity Analysis Using Uncertainty Measures
47
3.9 Comparing Dempster-Shafer Theory and Probabilistic Settings
48
3.9.1 The Decision between Dempster-Shafer Theory and Probability
50
4 Predicting Dependability Characteristics by Similarity Estimates – A Regression Approach 53
4.1 Related Work: The Transformation Factor
54
4.2 Estimation Procedure
56
4.2.1 Elicitation
56
4.2.1.1 Selection of One or More Similar Components
56
4.2.1.2 Estimation of Similarity Relations
57
4.2.1.3 Providing Training Data
59
4.2.2 Inherent Sources of Prediction Uncertainty
59
4.3 Formulating Similarity Prediction as a Regression Problem
60
4.3.1 Regression
60
4.3.2 Implementing the Regression Problem
61
4.4 Learning Similarity Prediction
61
4.4.1 Neural Networks
62
4.4.1.1 Input and Output Representation
62
4.4.1.2 Customized Error Function
63
4.4.1.3 Network Design
64
4.4.2 Gaussian Processes
64
4.5 Test Sets
66
4.5.1 Scalable Test Suite
66
4.5.2 Real Test Set
68
4.6 Results
69
4.6.1 Scalable Test Suite
69
4.6.1.1 Neural Networks
70
4.6.1.2 Gaussian Processes
71
4.6.2 Real Test Set
73
4.6.2.1 Neural Networks
73
4.6.2.2 Gaussian Processes
76
4.7 Conclusion
76
5 Design Space Specification of Dependability Optimization Problems Using Feature Models 77
5.1 The Redundancy Allocation Problem
79
5.2 Feature Models
81
5.3 Basic Feature Set Types
83
5.4 Feature Models Defining Optimization Problems
84
5.5 Generating Reliability Block Diagrams and Fault Trees from Realizations
85
5.6 Conclusion
87
6 Evolutionary Multi-objective Optimization of Imprecise Probabilistic Models 89
6.1 Pareto-Based Multi-objective Optimization
89
6.1.1 Deterministic Multi-objective Functions
90
6.1.2 Imprecise Multi-objective Functions
91
6.1.2.1 Multi-objective Optimization in System Dependability
93
6.2 Multi-objective Evolutionary Algorithms
93
6.2.1 Evolutionary Algorithms: Overview and Terminology
93
6.2.2 An Evolutionary Algorithm for Multi-objective Optimization under Uncertainty
95
6.3 Dominance Criteria on Imprecise Objective Functions
98
6.3.1 Probabilistic Dominance
98
6.3.2 Imprecise Probabilistic Dominance
99
6.4 Density Estimation for Imprecise Solution Sets
99
6.5 Illustrative Examples
101
6.5.1 RAP
102
6.5.2 Complex Design Space
104
6.6 Conclusion
106
7 Case Study 107
7.1 Background
107
7.2 System under Investigation
108
7.3 Fault Tree Model
109
7.4 Quantifying Reliability According to the IEC 61508 and the ESReDA Uncertainty Analysis Framework
109
7.5 Quantification of the Input Sources
112
7.6 Practical Implementation Characteristics and Results of the Uncertainty Study
114
7.7 Specifying Design Alternatives
116
7.8 Optimizing System Reliability
119
8 Summary, Conclusions and Outlook 123
8.1 Summary and Main Contributions
123
8.2 Outlook
125
References 127
Index 137