Muutke küpsiste eelistusi

Dependability Modelling under Uncertainty: An Imprecise Probabilistic Approach Softcover reprint of hardcover 1st ed. 2008 [Pehme köide]

  • Formaat: Paperback / softback, 140 pages, kõrgus x laius: 235x155 mm, kaal: 454 g, 68 Illustrations, black and white; XVI, 140 p. 68 illus., 1 Paperback / softback
  • Sari: Studies in Computational Intelligence 148
  • Ilmumisaeg: 18-Nov-2010
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3642088805
  • ISBN-13: 9783642088803
  • Pehme köide
  • Hind: 95,02 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 111,79 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 140 pages, kõrgus x laius: 235x155 mm, kaal: 454 g, 68 Illustrations, black and white; XVI, 140 p. 68 illus., 1 Paperback / softback
  • Sari: Studies in Computational Intelligence 148
  • Ilmumisaeg: 18-Nov-2010
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3642088805
  • ISBN-13: 9783642088803

Mechatronic design processes have become shorter and more parallelized, induced by growing time-to-market pressure. Methods that enable quantitative analysis in early design stages are required, should dependability analyses aim to influence the design. Due to the limited amount of data in this phase, the level of uncertainty is high and explicit modeling of these uncertainties becomes necessary.

This work introduces new uncertainty-preserving dependability methods for early design stages. These include the propagation of uncertainty through dependability models, the activation of data from similar components for analyses and the integration of uncertain dependability predictions into an optimization framework. It is shown that Dempster-Shafer theory can be an alternative to probability theory in early design stage dependability predictions. Expert estimates can be represented, input uncertainty is propagated through the system and prediction uncertainty can be measured and interpreted. The resulting coherent methodology can be applied to represent the uncertainty in dependability models.



This work introduces new uncertainty-preserving dependability methods for early design stages. It is further shown that Dempster-Shafer theory can be an alternative to probability theory in early design stage dependability predictions.

Dependability Prediction in Early Design Stages.- Representation and
Propagation of Uncertainty Using the Dempster-Shafer Theory of Evidence.-
Predicting Dependability Characteristics by Similarity Estimates A
Regression Approach.- Design Space Specification of Dependability
Optimization Problems Using Feature Models.- Evolutionary Multi-objective
Optimization of Imprecise Probabilistic Models.- Case Study.- Summary,
Conclusions and Outlook.