Contributors |
|
xiii | |
|
|
|
|
1.1 Plastics in engineering |
|
|
1 | (1) |
|
1.2 The development of plastic products |
|
|
2 | (1) |
|
1.3 This book approach to design |
|
|
3 | (1) |
|
1.4 The organization of the book |
|
|
3 | (3) |
|
|
6 | (1) |
|
|
7 | (3) |
|
2 Development of plastic products |
|
|
|
|
2.1 The steps in the development of plastic products |
|
|
10 | (3) |
|
2.2 Conception of products in plastics |
|
|
13 | (9) |
|
|
13 | (1) |
|
|
14 | (4) |
|
2.2.3 Decisions in design |
|
|
18 | (2) |
|
2.2.4 Plastics and simultaneous engineering |
|
|
20 | (2) |
|
2.3 Design rules for molded products |
|
|
22 | (12) |
|
|
23 | (2) |
|
2.3.2 Reduce the number of components |
|
|
25 | (1) |
|
2.3.3 Maximize material efficiency |
|
|
25 | (7) |
|
|
32 | (1) |
|
|
32 | (2) |
|
2.4 Design for manufacturing |
|
|
34 | (4) |
|
|
34 | (1) |
|
|
34 | (1) |
|
|
35 | (1) |
|
|
35 | (1) |
|
|
36 | (1) |
|
|
36 | (1) |
|
|
37 | (1) |
|
|
37 | (1) |
|
|
38 | (1) |
|
2.5 Design for sustainability |
|
|
38 | (6) |
|
2.5.1 Design for recycling |
|
|
39 | (3) |
|
2.5.2 Design using recycled materials |
|
|
42 | (2) |
|
|
44 | (1) |
|
|
45 | (2) |
|
3 Sustainability of plastics |
|
|
|
|
3.1 Applying ecodesign strategies to the full life cycle of products |
|
|
47 | (3) |
|
3.2 Recycling and recyclability criteria |
|
|
50 | (19) |
|
|
50 | (17) |
|
3.2.2 Recyclability criteria |
|
|
67 | (2) |
|
3.3 Reusing products and components |
|
|
69 | (5) |
|
|
69 | (4) |
|
|
73 | (1) |
|
3.4 Life cycle assessment and costing in plastics design |
|
|
74 | (8) |
|
|
74 | (1) |
|
3.4.2 The LCA methodology |
|
|
75 | (2) |
|
3.4.3 The life cycle costing methodology |
|
|
77 | (3) |
|
3.4.4 The LCA/LCC integrated model |
|
|
80 | (2) |
|
|
82 | (1) |
|
|
82 | (5) |
|
4 Selection of thermoplastics |
|
|
|
|
4.1 Selection of thermoplastics |
|
|
87 | (4) |
|
|
87 | (2) |
|
|
89 | (1) |
|
|
90 | (1) |
|
4.2 Thermoplastics in engineering |
|
|
91 | (3) |
|
4.2.1 Plastics use by sector |
|
|
93 | (1) |
|
|
94 | (14) |
|
|
94 | (11) |
|
|
105 | (2) |
|
|
107 | (1) |
|
|
108 | (13) |
|
4.4.1 Crystalline engineering polymers |
|
|
109 | (5) |
|
4.4.2 Amorphous engineering polymers |
|
|
114 | (4) |
|
4.4.3 Thermoplastic polyesters |
|
|
118 | (1) |
|
4.4.4 Thermoplastic elastomers |
|
|
119 | (2) |
|
4.5 Plastics for high temperatures |
|
|
121 | (8) |
|
|
123 | (4) |
|
4.5.2 Polyphenylene sulfide |
|
|
127 | (1) |
|
|
127 | (1) |
|
4.5.4 Polyaryletherketones |
|
|
128 | (1) |
|
|
128 | (1) |
|
4.6 Reinforced thermoplastics |
|
|
129 | (5) |
|
4.7 Cost factors in plastics |
|
|
134 | (5) |
|
|
134 | (2) |
|
|
136 | (1) |
|
|
136 | (1) |
|
|
137 | (2) |
|
|
139 | (1) |
|
|
139 | (2) |
|
5 Basic data required for designing plastic parts |
|
|
|
|
|
141 | (6) |
|
|
141 | (3) |
|
5.1.2 Chemical and environmental resistance |
|
|
144 | (1) |
|
|
144 | (3) |
|
|
147 | (12) |
|
|
148 | (2) |
|
|
150 | (2) |
|
5.2.3 The glass temperature transition |
|
|
152 | (1) |
|
|
152 | (1) |
|
|
153 | (5) |
|
|
158 | (1) |
|
|
159 | (3) |
|
5.3.1 Thermal conductivity |
|
|
160 | (1) |
|
5.3.2 Linear expansion coefficient |
|
|
160 | (1) |
|
5.3.3 Operating temperatures |
|
|
161 | (1) |
|
|
162 | (6) |
|
|
162 | (3) |
|
5.4.2 Molecular weight and MFI |
|
|
165 | (2) |
|
|
167 | (1) |
|
5.5 Tribological properties |
|
|
168 | (8) |
|
5.5.1 Friction in plastics products |
|
|
168 | (1) |
|
5.5.2 Friction in processing |
|
|
169 | (3) |
|
|
172 | (3) |
|
|
175 | (1) |
|
|
176 | (13) |
|
5.6.1 Refraction and reflection |
|
|
177 | (2) |
|
|
179 | (1) |
|
|
180 | (1) |
|
|
181 | (1) |
|
|
182 | (2) |
|
|
184 | (1) |
|
|
184 | (1) |
|
5.6.8 Visual color assessment |
|
|
184 | (1) |
|
|
185 | (4) |
|
|
189 | (2) |
|
|
191 | (1) |
|
|
192 | (5) |
|
|
192 | (1) |
|
|
193 | (1) |
|
|
194 | (1) |
|
5.9.4 Extrusion blow molding |
|
|
194 | (1) |
|
|
195 | (2) |
|
5.9.6 Structural foam molding |
|
|
197 | (1) |
|
5.9.7 Materials and processing |
|
|
197 | (1) |
|
|
197 | (2) |
|
|
199 | (2) |
|
6 Mechanical design with plastics |
|
|
|
|
6.1 Golden rules in designing with thermoplastics |
|
|
201 | (1) |
|
6.2 Mechanical behavior of plastics: Viscoelasticity and anisotropy |
|
|
202 | (3) |
|
|
203 | (1) |
|
|
203 | (2) |
|
6.3 Mechanical design with isotropic materials |
|
|
205 | (8) |
|
6.3.1 Design for strength |
|
|
205 | (7) |
|
6.3.2 Design for stiffness |
|
|
212 | (1) |
|
6.4 Short time loading---snap-joints |
|
|
213 | (8) |
|
6.4.1 Specifications for snap-joints |
|
|
213 | (8) |
|
6.5 Long-term design---The pseudoelastic method |
|
|
221 | (6) |
|
6.5.1 Creep and stress relaxation |
|
|
221 | (1) |
|
6.5.2 Sources of information of time-dependent properties |
|
|
221 | (1) |
|
6.5.3 Pseudoelastic method---Design for stiffness with creep data |
|
|
222 | (1) |
|
6.5.4 Examples of application of the pseudoelastic method |
|
|
223 | (4) |
|
6.6 The influence of processing on the mechanical performance |
|
|
227 | (5) |
|
6.6.1 Anisotropy induced by flow |
|
|
227 | (1) |
|
6.6.2 Processing, morphology and properties |
|
|
227 | (5) |
|
6.7 Mechanical design with anisotropic materials |
|
|
232 | (13) |
|
6.7.1 The subcomponent approach |
|
|
233 | (6) |
|
6.7.2 A design methodology based on the subcomponent concept |
|
|
239 | (6) |
|
|
245 | (2) |
|
|
247 | (2) |
|
7 Designing for additive manufacturing |
|
|
|
|
7.1 Part design: AM vs traditional techniques |
|
|
249 | (14) |
|
|
249 | (3) |
|
|
252 | (10) |
|
7.1.3 Benefits and weaknesses |
|
|
262 | (1) |
|
7.2 Design criteria for AM |
|
|
263 | (16) |
|
7.2.1 FFF---Fused filament fabrication |
|
|
263 | (5) |
|
|
268 | (3) |
|
7.2.3 SLS---Selective laser sintering |
|
|
271 | (5) |
|
7.2.4 DMLS---Direct metal laser sintering |
|
|
276 | (3) |
|
7.3 Selection of AM technologies |
|
|
279 | (4) |
|
7.3.1 The purpose of the prototype |
|
|
280 | (1) |
|
7.3.2 The quality of the prototype |
|
|
281 | (1) |
|
7.3.3 The required quantity |
|
|
282 | (1) |
|
7.3.4 The complexity of the prototype |
|
|
282 | (1) |
|
|
283 | (1) |
|
7.4 AM applications in the industry context |
|
|
283 | (6) |
|
7.4.1 FDM functional product |
|
|
284 | (1) |
|
|
285 | (4) |
|
|
289 | (2) |
|
|
291 | (2) |
|
8 Tooling design for injection molding |
|
|
|
|
|
|
293 | (3) |
|
|
294 | (1) |
|
|
295 | (1) |
|
|
296 | (4) |
|
|
297 | (1) |
|
|
297 | (1) |
|
|
298 | (1) |
|
|
298 | (1) |
|
|
299 | (1) |
|
|
300 | (1) |
|
|
300 | (41) |
|
|
300 | (1) |
|
|
301 | (15) |
|
|
316 | (3) |
|
8.3.4 Temperature control |
|
|
319 | (6) |
|
|
325 | (8) |
|
8.3.6 Nonstandard ejection processes |
|
|
333 | (6) |
|
8.3.7 Ejection in three-plate molds |
|
|
339 | (2) |
|
|
341 | (9) |
|
8.4.1 Molds with side movements |
|
|
341 | (7) |
|
8.4.2 Molds with rotating movements |
|
|
348 | (2) |
|
|
350 | (3) |
|
8.5.1 Typical hot runner mold configurations |
|
|
350 | (1) |
|
8.5.2 Hot runner manifolds |
|
|
350 | (1) |
|
|
351 | (2) |
|
8.5.4 Valve gate hot runner nozzles |
|
|
353 | (1) |
|
8.6 Mold design calculations |
|
|
353 | (17) |
|
8.6.1 Dimensioning of the feed system |
|
|
355 | (5) |
|
8.6.2 Design of temperature control systems |
|
|
360 | (3) |
|
|
363 | (7) |
|
8.7 Determination of the injection cycle time |
|
|
370 | (3) |
|
|
370 | (1) |
|
8.7.2 Pressurization time |
|
|
370 | (1) |
|
|
371 | (1) |
|
8.7.4 Mold opening and closing and molding ejection time |
|
|
371 | (1) |
|
|
371 | (2) |
|
8.8 Reusability and recycling of injection molds |
|
|
373 | (6) |
|
8.8.1 Injection mold reutilization |
|
|
373 | (2) |
|
|
375 | (1) |
|
8.8.3 Life cycle stage---Final disposal |
|
|
375 | (4) |
|
|
379 | (1) |
|
|
379 | (2) |
|
9 Rapid manufacturing and tooling |
|
|
|
|
9.1 Rapid prototyping technologies |
|
|
381 | (3) |
|
9.2 Rapid prototyping in mold making |
|
|
384 | (29) |
|
|
385 | (7) |
|
|
392 | (16) |
|
|
408 | (5) |
|
9.3 Hybrid molds: Trends in injection mold design |
|
|
413 | (39) |
|
9.3.1 Molds for short series: The concept of hybrid mold |
|
|
413 | (2) |
|
9.3.2 Materials for hybrid molds |
|
|
415 | (3) |
|
9.3.3 Design rules for hybrid molds |
|
|
418 | (11) |
|
9.3.4 Tribological issues |
|
|
429 | (6) |
|
|
435 | (10) |
|
9.3.6 Performance of moldings from hybrid molds |
|
|
445 | (5) |
|
9.3.7 The use of CAD/CAE systems in hybrid mold design |
|
|
450 | (2) |
|
|
452 | (1) |
|
|
453 | (4) |
|
10 Plastics manufacturing |
|
|
|
|
|
10.1 Processing principles |
|
|
457 | (2) |
|
|
457 | (1) |
|
10.1.2 Factors relevant in plastics processing |
|
|
457 | (2) |
|
10.2 Main processing techniques |
|
|
459 | (5) |
|
|
460 | (2) |
|
10.2.2 Production of continuous products |
|
|
462 | (2) |
|
|
464 | (7) |
|
10.3.1 Extrusion blow molding |
|
|
464 | (1) |
|
10.3.2 Injection blow molding |
|
|
465 | (1) |
|
|
466 | (1) |
|
10.3.4 Rotational molding |
|
|
466 | (5) |
|
|
471 | (9) |
|
|
472 | (2) |
|
|
474 | (1) |
|
10.4.3 The process variables |
|
|
474 | (5) |
|
10.4.4 Thermomechanical experience |
|
|
479 | (1) |
|
10.5 Injection molding equipment |
|
|
480 | (6) |
|
10.5.1 Injection molding units |
|
|
480 | (3) |
|
10.5.2 Types of injection molding machines |
|
|
483 | (3) |
|
10.6 Production cells and process integration |
|
|
486 | (2) |
|
10.6.1 Feeding and preparation of raw material |
|
|
487 | (1) |
|
10.6.2 Mold temperature control |
|
|
487 | (1) |
|
10.6.3 Automatic molding handling |
|
|
487 | (1) |
|
10.7 Nonconventional molding techniques |
|
|
488 | (21) |
|
10.7.1 Fluid assisted injection molding |
|
|
489 | (8) |
|
10.7.2 Multicomponent injection molding |
|
|
497 | (10) |
|
|
507 | (2) |
|
|
509 | (2) |
|
11 Processing and product performance |
|
|
|
|
|
|
511 | (19) |
|
11.1.1 Process tolerances |
|
|
512 | (3) |
|
11.1.2 Factors affecting shrinkage |
|
|
515 | (8) |
|
11.1.3 Differential shrinkage |
|
|
523 | (7) |
|
|
530 | (3) |
|
11.2.1 Anisotropy induced by processing |
|
|
530 | (2) |
|
11.2.2 Anisotropy induced by reinforcement |
|
|
532 | (1) |
|
|
533 | (3) |
|
|
536 | (1) |
|
|
537 | (6) |
|
11.6 The relationship Morphology - Processing - Mechanical behavior |
|
|
543 | (18) |
|
11.6.1 Semicrystalline materials |
|
|
545 | (4) |
|
11.6.2 Amorphous materials |
|
|
549 | (1) |
|
11.6.3 Fiber-reinforced materials |
|
|
550 | (3) |
|
|
553 | (3) |
|
|
556 | (5) |
|
11.7 Factors that promote the ductile-fragile transition |
|
|
561 | (8) |
|
|
561 | (1) |
|
|
561 | (2) |
|
|
563 | (1) |
|
11.7.4 Material compounding |
|
|
563 | (2) |
|
|
565 | (2) |
|
|
567 | (2) |
|
11.8 Failure of plastic products |
|
|
569 | (16) |
|
|
570 | (8) |
|
|
578 | (7) |
|
|
585 | (2) |
Index |
|
587 | |