Muutke küpsiste eelistusi

E-raamat: Design and Manufacturing of Plastics Products: Integrating Traditional Methods With Additive Manufacturing

(Full professor, University of Minho, Portugal)
  • Formaat: PDF+DRM
  • Sari: Plastics Design Library
  • Ilmumisaeg: 14-Aug-2021
  • Kirjastus: William Andrew Publishing
  • Keel: eng
  • ISBN-13: 9780128197769
  • Formaat - PDF+DRM
  • Hind: 266,18 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Sari: Plastics Design Library
  • Ilmumisaeg: 14-Aug-2021
  • Kirjastus: William Andrew Publishing
  • Keel: eng
  • ISBN-13: 9780128197769

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Design and Manufacturing of Plastics Products: Integrating Conventional Methods and Innovative Technologies brings together detailed information on design, materials selection, properties, manufacturing, and the performance of plastic products, incorporating the utilization of the latest novel techniques and additive manufacturing technologies. The book integrates the design of molded products and conventional manufacturing and molding techniques with recent additive manufacturing techniques to produce performant products and cost-effective tools. Key areas of innovation are explained in detail, including hybrid molds, the integration of processing options with product properties and performance, and sustainability factors such as eco-design strategies, recycling, and lifecycle assessment.

Other sections cover the development of plastics products, including design methodologies, design solutions specific to plastics, and design for re-use, as well as manufacturing and performance, with an emphasis on thermoplastic molding techniques, recent advances on plastics tooling, and the appraisal of the influence of processing options on product performance. This is a valuable resource to plastics engineers, design engineers, mold makers, and product or part designers across industries. It will also be of interest to researchers and advanced students in plastics engineering, polymer science, additive manufacturing and mechanical engineering.

  • Offers a thorough grounding in plastics part design, thermoplastic material selection, properties, manufacture and performance of plastic parts
  • Presents the latest advances, including the integration of additive manufacturing in the plastics product development cycle, hybrid molds, and lifecycle and recycling considerations
  • Enables the reader to utilize traditional methods alongside cutting-edge technologies in the production of performant plastic products and parts
Contributors xiii
1 Introduction
Antonio Sergio Pouzada
1.1 Plastics in engineering
1(1)
1.2 The development of plastic products
2(1)
1.3 This book approach to design
3(1)
1.4 The organization of the book
3(3)
1.5 How to use this book
6(1)
References
7(3)
2 Development of plastic products
Antonio Sergio Pouzada
2.1 The steps in the development of plastic products
10(3)
2.2 Conception of products in plastics
13(9)
2.2.1 Design guidelines
13(1)
2.2.2 Specifications
14(4)
2.2.3 Decisions in design
18(2)
2.2.4 Plastics and simultaneous engineering
20(2)
2.3 Design rules for molded products
22(12)
2.3.1 Minimize costs
23(2)
2.3.2 Reduce the number of components
25(1)
2.3.3 Maximize material efficiency
25(7)
2.3.4 Make assembly easy
32(1)
2.3.5 Molded-in inserts
32(2)
2.4 Design for manufacturing
34(4)
2.4.1 Material
34(1)
2.4.2 Finishing
34(1)
2.4.3 Radius
35(1)
2.4.4 Wall thickness
35(1)
2.4.5 Gating
36(1)
2.4.6 Ribbing
36(1)
2.4.7 Drafts
37(1)
2.4.8 Mold shrinkage
37(1)
2.4.9 Special features
38(1)
2.5 Design for sustainability
38(6)
2.5.1 Design for recycling
39(3)
2.5.2 Design using recycled materials
42(2)
2.6 Concluding remark
44(1)
References
45(2)
3 Sustainability of plastics
Carlos A.A. Bernardo
3.1 Applying ecodesign strategies to the full life cycle of products
47(3)
3.2 Recycling and recyclability criteria
50(19)
3.2.1 Recycling
50(17)
3.2.2 Recyclability criteria
67(2)
3.3 Reusing products and components
69(5)
3.3.1 General framework
69(4)
3.3.2 Design for reuse
73(1)
3.4 Life cycle assessment and costing in plastics design
74(8)
3.4.1 Product life cycle
74(1)
3.4.2 The LCA methodology
75(2)
3.4.3 The life cycle costing methodology
77(3)
3.4.4 The LCA/LCC integrated model
80(2)
3.5 Concluding remark
82(1)
References
82(5)
4 Selection of thermoplastics
Antonio Sergio Pouzada
4.1 Selection of thermoplastics
87(4)
4.1.1 The design process
87(2)
4.1.2 Specifications
89(1)
4.1.3 Computer databases
90(1)
4.2 Thermoplastics in engineering
91(3)
4.2.1 Plastics use by sector
93(1)
4.3 Commodity materials
94(14)
4.3.1 Polyolefins
94(11)
4.3.2 Styrenics
105(2)
4.3.3 PVC
107(1)
4.4 Engineering plastics
108(13)
4.4.1 Crystalline engineering polymers
109(5)
4.4.2 Amorphous engineering polymers
114(4)
4.4.3 Thermoplastic polyesters
118(1)
4.4.4 Thermoplastic elastomers
119(2)
4.5 Plastics for high temperatures
121(8)
4.5.1 Fluoroplastics
123(4)
4.5.2 Polyphenylene sulfide
127(1)
4.5.3 Polysulfones
127(1)
4.5.4 Polyaryletherketones
128(1)
4.5.5 Imide polymers
128(1)
4.6 Reinforced thermoplastics
129(5)
4.7 Cost factors in plastics
134(5)
4.7.1 Raw material
134(2)
4.7.2 Tooling
136(1)
4.7.3 Processing
136(1)
4.7.4 Machine hour rate
137(2)
4.8 Concluding remarks
139(1)
References
139(2)
5 Basic data required for designing plastic parts
Antonio Sergio Pouzada
5.1 General properties
141(6)
5.1.1 Specific gravity
141(3)
5.1.2 Chemical and environmental resistance
144(1)
5.1.3 Fluid absorption
144(3)
5.2 Mechanical
147(12)
5.2.1 Data for strength
148(2)
5.2.2 Data for stiffness
150(2)
5.2.3 The glass temperature transition
152(1)
5.2.4 Plastic composites
152(1)
5.2.5 Long-term behavior
153(5)
5.2.6 Impact
158(1)
5.3 Thermal
159(3)
5.3.1 Thermal conductivity
160(1)
5.3.2 Linear expansion coefficient
160(1)
5.3.3 Operating temperatures
161(1)
5.4 Rheological
162(6)
5.4.1 Fluids and flow
162(3)
5.4.2 Molecular weight and MFI
165(2)
5.4.3 Spiral flow
167(1)
5.5 Tribological properties
168(8)
5.5.1 Friction in plastics products
168(1)
5.5.2 Friction in processing
169(3)
5.5.3 Wear of polymers
172(3)
5.5.4 Hardness
175(1)
5.6 Optical properties
176(13)
5.6.1 Refraction and reflection
177(2)
5.6.2 Gloss
179(1)
5.6.3 Transparency
180(1)
5.6.4 Haze
181(1)
5.6.5 Clarity
182(2)
5.6.6 Color
184(1)
5.6.7 Color perception
184(1)
5.6.8 Visual color assessment
184(1)
5.6.9 Colorimetry
185(4)
5.7 Electrical
189(2)
5.8 Flammability
191(1)
5.9 Processability
192(5)
5.9.1 Injection molding
192(1)
5.9.2 Screw extrusion
193(1)
5.9.3 Rotational molding
194(1)
5.9.4 Extrusion blow molding
194(1)
5.9.5 Thermoforming
195(2)
5.9.6 Structural foam molding
197(1)
5.9.7 Materials and processing
197(1)
5.10 Concluding remarks
197(2)
References
199(2)
6 Mechanical design with plastics
Antonio Sergio Pouzada
6.1 Golden rules in designing with thermoplastics
201(1)
6.2 Mechanical behavior of plastics: Viscoelasticity and anisotropy
202(3)
6.2.1 Short-term tests
203(1)
6.2.2 Long-term tests
203(2)
6.3 Mechanical design with isotropic materials
205(8)
6.3.1 Design for strength
205(7)
6.3.2 Design for stiffness
212(1)
6.4 Short time loading---snap-joints
213(8)
6.4.1 Specifications for snap-joints
213(8)
6.5 Long-term design---The pseudoelastic method
221(6)
6.5.1 Creep and stress relaxation
221(1)
6.5.2 Sources of information of time-dependent properties
221(1)
6.5.3 Pseudoelastic method---Design for stiffness with creep data
222(1)
6.5.4 Examples of application of the pseudoelastic method
223(4)
6.6 The influence of processing on the mechanical performance
227(5)
6.6.1 Anisotropy induced by flow
227(1)
6.6.2 Processing, morphology and properties
227(5)
6.7 Mechanical design with anisotropic materials
232(13)
6.7.1 The subcomponent approach
233(6)
6.7.2 A design methodology based on the subcomponent concept
239(6)
6.8 Concluding remarks
245(2)
References
247(2)
7 Designing for additive manufacturing
Antonio Jose Pontes
7.1 Part design: AM vs traditional techniques
249(14)
7.1.1 Introduction
249(3)
7.1.2 AM technologies
252(10)
7.1.3 Benefits and weaknesses
262(1)
7.2 Design criteria for AM
263(16)
7.2.1 FFF---Fused filament fabrication
263(5)
7.2.2 PolyJet
268(3)
7.2.3 SLS---Selective laser sintering
271(5)
7.2.4 DMLS---Direct metal laser sintering
276(3)
7.3 Selection of AM technologies
279(4)
7.3.1 The purpose of the prototype
280(1)
7.3.2 The quality of the prototype
281(1)
7.3.3 The required quantity
282(1)
7.3.4 The complexity of the prototype
282(1)
7.3.5 The cost or budget
283(1)
7.4 AM applications in the industry context
283(6)
7.4.1 FDM functional product
284(1)
7.4.2 Hybrid products
285(4)
7.5 Final remarks
289(2)
References
291(2)
8 Tooling design for injection molding
Antonio Manuel Brito
Antonio Sergio Pouzada
8.1 Types of molds
293(3)
8.1.1 Cold runner molds
294(1)
8.1.2 Hot runner molds
295(1)
8.2 Mold materials
296(4)
8.2.1 Carbon steel
297(1)
8.2.2 Pretreated steels
297(1)
8.2.3 Stainless steels
298(1)
8.2.4 Hardened steels
298(1)
8.2.5 Aluminum
299(1)
8.2.6 Copper alloys
300(1)
8.3 Parts of the mold
300(41)
8.3.1 Structure
300(1)
8.3.2 Functional systems
301(15)
8.3.3 Venting
316(3)
8.3.4 Temperature control
319(6)
8.3.5 Ejection system
325(8)
8.3.6 Nonstandard ejection processes
333(6)
8.3.7 Ejection in three-plate molds
339(2)
8.4 Molds with movements
341(9)
8.4.1 Molds with side movements
341(7)
8.4.2 Molds with rotating movements
348(2)
8.5 Hot runner molds
350(3)
8.5.1 Typical hot runner mold configurations
350(1)
8.5.2 Hot runner manifolds
350(1)
8.5.3 Nozzles
351(2)
8.5.4 Valve gate hot runner nozzles
353(1)
8.6 Mold design calculations
353(17)
8.6.1 Dimensioning of the feed system
355(5)
8.6.2 Design of temperature control systems
360(3)
8.6.3 Injection pressure
363(7)
8.7 Determination of the injection cycle time
370(3)
8.7.1 Injection time
370(1)
8.7.2 Pressurization time
370(1)
8.7.3 Cooling time
371(1)
8.7.4 Mold opening and closing and molding ejection time
371(1)
8.7.5 Total cycle time
371(2)
8.8 Reusability and recycling of injection molds
373(6)
8.8.1 Injection mold reutilization
373(2)
8.8.2 Environment impact
375(1)
8.8.3 Life cycle stage---Final disposal
375(4)
References
379(1)
Further reading
379(2)
9 Rapid manufacturing and tooling
Pedro Goncalves Martinho
9.1 Rapid prototyping technologies
381(3)
9.2 Rapid prototyping in mold making
384(29)
9.2.1 Indirect processes
385(7)
9.2.2 Direct processes
392(16)
9.2.3 Production aspects
408(5)
9.3 Hybrid molds: Trends in injection mold design
413(39)
9.3.1 Molds for short series: The concept of hybrid mold
413(2)
9.3.2 Materials for hybrid molds
415(3)
9.3.3 Design rules for hybrid molds
418(11)
9.3.4 Tribological issues
429(6)
9.3.5 Tool integrity
435(10)
9.3.6 Performance of moldings from hybrid molds
445(5)
9.3.7 The use of CAD/CAE systems in hybrid mold design
450(2)
9.4 Conclusions
452(1)
References
453(4)
10 Plastics manufacturing
Antonio Jose Pontes
Antonio Sergio Pouzada
10.1 Processing principles
457(2)
10.1.1 Processing route
457(1)
10.1.2 Factors relevant in plastics processing
457(2)
10.2 Main processing techniques
459(5)
10.2.1 Screw extrusion
460(2)
10.2.2 Production of continuous products
462(2)
10.3 Molding techniques
464(7)
10.3.1 Extrusion blow molding
464(1)
10.3.2 Injection blow molding
465(1)
10.3.3 Thermoforming
466(1)
10.3.4 Rotational molding
466(5)
10.4 Injection molding
471(9)
10.4.1 The process
472(2)
10.4.2 Molding cycle
474(1)
10.4.3 The process variables
474(5)
10.4.4 Thermomechanical experience
479(1)
10.5 Injection molding equipment
480(6)
10.5.1 Injection molding units
480(3)
10.5.2 Types of injection molding machines
483(3)
10.6 Production cells and process integration
486(2)
10.6.1 Feeding and preparation of raw material
487(1)
10.6.2 Mold temperature control
487(1)
10.6.3 Automatic molding handling
487(1)
10.7 Nonconventional molding techniques
488(21)
10.7.1 Fluid assisted injection molding
489(8)
10.7.2 Multicomponent injection molding
497(10)
10.7.3 Back molding
507(2)
References
509(2)
11 Processing and product performance
Antonio Jose Pontes
Antonio Sergio Pouzada
11.1 Shrinkage
511(19)
11.1.1 Process tolerances
512(3)
11.1.2 Factors affecting shrinkage
515(8)
11.1.3 Differential shrinkage
523(7)
11.2 Orientation
530(3)
11.2.1 Anisotropy induced by processing
530(2)
11.2.2 Anisotropy induced by reinforcement
532(1)
11.3 Residual stresses
533(3)
11.4 Warpage
536(1)
11.5 Weld lines
537(6)
11.6 The relationship Morphology - Processing - Mechanical behavior
543(18)
11.6.1 Semicrystalline materials
545(4)
11.6.2 Amorphous materials
549(1)
11.6.3 Fiber-reinforced materials
550(3)
11.6.4 Compounding
553(3)
11.6.5 Structural foams
556(5)
11.7 Factors that promote the ductile-fragile transition
561(8)
11.7.1 Product design
561(1)
11.7.2 Type of loading
561(2)
11.7.3 Molecular weight
563(1)
11.7.4 Material compounding
563(2)
11.7.5 Processing
565(2)
11.7.6 Environment
567(2)
11.8 Failure of plastic products
569(16)
11.8.1 Product design
570(8)
11.8.2 Processing
578(7)
References
585(2)
Index 587
Dr. António Sérgio Duarte Pouzada is a distinguished mechanical engineer, leaving a substantial academic and professional legacy. His journey commenced as a project engineer in Angola, and in 1971, he joined the University of Luanda. After a period of teaching in Portugal, Dr. Pouzada became a faculty member at the University of Minho in 1977. His dedication led him to ascend to the position of Full Professor of Polymer Engineering in 1998. Dr. Pouzada earned his Master of Science in Applied Polymer Engineering from the University of Loughborough in 1979, followed by a Ph.D. in 1982. Throughout his illustrious career, he actively supervised doctoral theses, authored numerous articles, and assumed leadership roles, including the presidency of the School of Engineering at the University of Minho.