Muutke küpsiste eelistusi

Discovery Science: 27th International Conference, DS 2024, Pisa, Italy, October 1416, 2024, Proceedings, Part I [Pehme köide]

Edited by , Edited by , Edited by , Edited by , Edited by
  • Formaat: Paperback / softback, 419 pages, kõrgus x laius: 235x155 mm, 130 Illustrations, color; 10 Illustrations, black and white; XXV, 419 p. 140 illus., 130 illus. in color., 1 Paperback / softback
  • Sari: Lecture Notes in Artificial Intelligence 15243
  • Ilmumisaeg: 28-Jan-2025
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3031789768
  • ISBN-13: 9783031789762
  • Pehme köide
  • Hind: 70,93 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 83,45 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 419 pages, kõrgus x laius: 235x155 mm, 130 Illustrations, color; 10 Illustrations, black and white; XXV, 419 p. 140 illus., 130 illus. in color., 1 Paperback / softback
  • Sari: Lecture Notes in Artificial Intelligence 15243
  • Ilmumisaeg: 28-Jan-2025
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3031789768
  • ISBN-13: 9783031789762
The two-volume set LNAI 15243 + 15244 constitutes the proceedings of the 27th International Conference on Discovery Science, DS 2024, which took place in Pisa, Italy, during October 14-16, 2024.





The 53 full papers presented in the proceedings were carefully reviewed and selected from 121 submissions. They were organized in topical sections as follows: 





Part I: LLM, Text Analytics, and Ethical Aspects of AI; Natural Language Processing, Sequential Data and Science Discovery; Data-Driven Science Discovery Methodologies; Graph Neural Network, Graph Theory, Unsupervised Learning and Regression; 





Part II: Tree-Based Models and Causal Discovery; Security and Anomaly Detection; Computer Vision and Explainable AI; Classification Models; SoBigData++: City for Citizens and Explainable AI; SoBigData++: Societal Debates and Misinformation Analysis.





 

LLM, Text Analytics, and Ethical Aspects of AI.- Natural Language Processing, Sequential Data and Science Discovery.- Data-Driven Science Discovery Methodologies; Graph Neural Network, Graph Theory.- Unsupervised Learning and Regression.