Muutke küpsiste eelistusi

Distributed Model Predictive Control Made Easy 2014 ed. [Kõva köide]

Edited by , Edited by
  • Kõva köide
  • Hind: 141,35 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 166,29 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja

The rapid evolution of computer science, communication, and information technology has enabled the application of control techniques to systems beyond the possibilities of control theory just a decade ago. Critical infrastructures such as electricity, water, traffic and intermodal transport networks are now in the scope of control engineers. The sheer size of such large-scale systems requires the adoption of advanced distributed control approaches. Distributed model predictive control (MPC) is one of the promising control methodologies for control of such systems.

This book provides a state-of-the-art overview of distributed MPC approaches, while at the same time making clear directions of research that deserve more attention. The core and rationale of 35 approaches are carefully explained. Moreover, detailed step-by-step algorithmic descriptions of each approach are provided. These features make the book a comprehensive guide both for those seeking an introduction to distributed MPC as well as for those who want to gain a deeper insight in the wide range of distributed MPC techniques available.



This book provides a state-of-the-art overview of distributed model predictive control (MPC) approaches. It carefully explains the core and rationale of 35 approaches, providing detailed step-by-step algorithmic descriptions of each approach.

Arvustused

From the reviews:

This book presents a modern solution for the control and monitoring of complex structures using distributed control systems based on high-level communication protocols dedicated to control applications. this book will be particularly interesting to readers in academia and research who wish to acquire a theoretical knowledge base and identify new areas of research. practitioners may find it a useful handbook to assist in current projects. (Eugen Petac, Computing Reviews, February, 2014)

1 On 35 Approaches for Distributed MPC Made Easy
1(40)
R. R. Negenborn
J. M. Maestre
Part I From Small-Scale to Large-Scale: The Group of Autonomous Systems Perspective
2 Bargaining Game Based Distributed MPC
41(16)
F. Valencia
J. D. Lopez
J. A. Patino
J. J. Espinosa
3 Cooperative Tube-Based Distributed MPC for Linear Uncertain Systems Coupled Via Constraints
57(16)
P. A. Trodden
A. G. Richards
4 Price-Driven Coordination for Distributed NMPC Using a Feedback Control Law
73(16)
R. Marti
D. Sarabia
C. de Prada
5 Distributed MPC for Consensus and Synchronization
89(12)
M. A. Muller
F. Allgower
6 Distributed MPC Under Coupled Constraints Based on Dantzig-Wolfe Decomposition
101(14)
R. Bourdais
J. Buisson
D. Dumur
H. Gueguen
P.-D. Morosan
7 Distributed MPC Via Dual Decomposition and Alternative Direction Method of Multipliers
115(18)
F. Farokhi
I. Shames
K. H. Johansson
8 D-SIORHC, Distributed MPC with Stability Constraints Based on a Game Approach
133(14)
J. M. Lemos
J. M. Igreja
9 A Distributed-in-Time NMPC-Based Coordination Mechanism for Resource Sharing Problems
147(16)
M. Y. Lamoudi
M. Alamir
P. Beguery
10 Rate Analysis of Inexact Dual Fast Gradient Method for Distributed MPC
163(16)
I. Necoara
11 Distributed MPC Via Dual Decomposition
179(14)
B. Biegel
J. Stoustrup
P. Andersen
12 Distributed Optimization for MPC of Linear Dynamic Networks
193(16)
E. Camponogara
13 Adaptive Quasi-Decentralized MPC of Networked Process Systems
209(16)
Y. Hu
N. H. El-Farra
14 Distributed Lyapunov-Based MPC
225(18)
R. Hermans
M. Lazar
A. Jokic
15 A Distributed Reference Management Scheme in Presence of Non-Convex Constraints: An MPC Based Approach
243(16)
F. Tedesco
D. M. Raimondo
A. Casavola
16 The Distributed Command Governor Approach in a Nutshell
259(16)
A. Casavola
E. Garone
F. Tedesco
17 Mixed-Integer Programming Techniques in Distributed MPC Problems
275(18)
I. Prodan
F. Stoican
S. Olaru
C. Stoica
S.-I. Niculescu
18 Distributed MPC of Interconnected Nonlinear Systems by Dynamic Dual Decomposition
293(16)
A. Grancharova
T. A. Johansen
19 Generalized Accelerated Gradient Methods for Distributed MPC Based on Dual Decomposition
309(18)
P. Giselsson
A. Rantzer
20 Distributed Multiple Shooting for Large Scale Nonlinear Systems
327(14)
A. Kozma
C. Savorgnan
M. Diehl
21 Nash-Based Distributed MPC for Multi-Rate Systems
341(16)
S. Roshany-Yamchi
R. R. Negenborn
A. A. Comelio
Part II From Large-Scale to Small-Scale: The Decomposed Monolithic System Perspective
22 Cooperative Dynamic MPC for Networked Control Systems
357(18)
I. Jurado
D. E. Quevedo
K. H. Johansson
A. Ahlen
23 Parallel Implementation of Hybrid MPC
375(18)
D. Axehill
A. Hansson
24 A Hierarchical MPC Approach with Guaranteed Feasibility for Dynamically Coupled Linear Systems
393(14)
M. D. Doan
T. Keviczky
B. De Schutter
25 Distributed MPC Based on a Team Game
407(14)
J. M. Maestre
F. J. Muros
F. Fele
D. Munoz de la Pena
E. F. Camacho
26 Distributed MPC: A Noncooperative Approach Based on Robustness Concepts
421(16)
G. Betti
M. Farina
R. Scattolini
27 Decompositions of Augmented Lagrange Formulations for Serial and Parallel Distributed MPC
437(14)
R. R. Negenborn
28 A Hierarchical Distributed MPC Approach: A Practical Implementation
451(14)
A. Zafra-Cabeza
J. M. Maestre
29 Distributed MPC Based on Agent Negotiation
465(14)
J. M. Maestre
D. Munoz de la Pena
E. F. Camacho
30 Lyapunov-based Distributed MPC Schemes: Sequential and Iterative Approaches
479(16)
J. Liu
D. Munoz de la Pena
P. D. Christofides
31 Multi-layer Decentralized MPC of Large-Scale Networked Systems
495(22)
C. Ocampo-Martinez
V. Puig
J. M. Grosso
S. Montes-de-Oca
32 Distributed MPC Using Reinforcement Learning Based Negotiation: Application to Large Scale Systems
517(18)
B. Morcego
V. Javalera
V. Puig
R. Vito
33 Hierarchical MPC for Multiple Commodity Transportation Networks
535(18)
J. L. Nabais
R. R. Negenborn
R. B. Carmona-Benitez
L. F. Mendonca
M. A. Botto
34 On the Use of Suboptimal Solvers for Efficient Cooperative Distributed Linear MPC
553(16)
G. Pannocchia
S. J. Wright
J. B. Rawlings
35 Cooperative Distributed MPC Integrating a Steady State Target Optimizer
569(16)
A. Ferramosca
D. Limon
A. H. Gonzalez
36 Cooperative MPC with Guaranteed Exponential Stability
585
A. Ferramosca