Muutke küpsiste eelistusi

Dynamics of Parallel Robots: From Rigid Bodies to Flexible Elements Softcover reprint of the original 1st ed. 2015 [Pehme köide]

  • Formaat: Paperback / softback, 350 pages, kõrgus x laius: 235x155 mm, kaal: 5621 g, 119 Illustrations, black and white; XVII, 350 p. 119 illus., 1 Paperback / softback
  • Sari: Mechanisms and Machine Science 35
  • Ilmumisaeg: 15-Oct-2016
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3319356607
  • ISBN-13: 9783319356600
  • Pehme köide
  • Hind: 95,02 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 111,79 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 350 pages, kõrgus x laius: 235x155 mm, kaal: 5621 g, 119 Illustrations, black and white; XVII, 350 p. 119 illus., 1 Paperback / softback
  • Sari: Mechanisms and Machine Science 35
  • Ilmumisaeg: 15-Oct-2016
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3319356607
  • ISBN-13: 9783319356600

This book starts with a short recapitulation on basic concepts, common to any types of robots (serial, tree structure, parallel, etc.), that are also necessary for computation of the dynamic models of parallel robots. Then, as dynamics requires the use of geometry and kinematics, the general equations of geometric and kinematic models of parallel robots are given. After, it is explained that parallel robot dynamic models can be obtained by decomposing the real robot into two virtual systems: a tree-structure robot (equivalent to the robot legs for which all joints would be actuated) plus a free body corresponding to the platform. Thus, the dynamics of rigid tree-structure robots is analyzed and algorithms to obtain their dynamic models in the most compact form are given. The dynamic model of the real rigid parallel robot is obtained by closing the loops through the use of the Lagrange multipliers. The problem of the dynamic model degeneracy near singularities is treated and optimal trajectory planning for crossing singularities is proposed. Lastly, the approach is extended to flexible parallel robots and the algorithms for computing their symbolic model in the most compact form are given. All theoretical developments are validated through experiments.

Arvustused

The present book, based on results published by many authors as well as by the two authors of the book over the last fifteen years, treats some special problems on the dynamics of parallel robots from rigid bodies to flexible elements . the intended audience for it consists of researchers, scientists and engineers, as well as master and PhD students interested in the theory and applications of parallel robots. (Clementina Mladenova, zbMATH 1369.68001, 2017)

Part I Prerequisites.- 1 Generalities on parallel robots.- 1.1
Introduction.- 1.2 General definitions.- 1.3 Types of PKM architectures.- 1.4
Why a book dedicated to the dynamics of parallel robots?.- 2 Homogeneous
transformation matrix.- 2.1 Homogeneous coordinates and homogeneous
transformation matrix.- 2.2 Elementary transformation matrices.- 2.3
Properties of homogeneous transformation matrices.- 2.4 Parameterization of
the general matrices of rotation.- 3 Representation of velocities and forces
/ acceleration of a body.- 3.1 Definition of a screw.- 3.2 Kinematic screw
(or twist).- 3.3 Representation of forces and moments (wrench).- 3.4
Condition of reciprocity.- 3.5 Transformation matrix between twists.- 3.6
Transformation matrix between wrenches.- 3.7 Acceleration of a body.- 4
Kinematic parameterizing of multibody systems.- 4.1 Kinematic pairs and joint
variables.- 4.2 Modified Denavit-Hartenberg parameters.- 5 Geometric,
velocity and acceleration analysis of open kinematic chains.- 5.1 Geometric
analysis of open kinematic chains.- 5.2 Velocity analysis of open kinematic
chains.- 5.3 Acceleration analysis of open kinematic chains.- 6 Dynamics
principles.- 6.1 The Lagrange formulation.- 6.2 The Newton-Euler equations.-
6.3 The principle of virtual powers.- 6.4 Computation of actuator input
efforts under a wrench exerted on the end-effector.- Part II Dynamics of
rigid parallel robots.- 7 Kinematics of parallel robots.- 7.1 Inverse
geometric model.- 7.2 Forward geometric model.- 7.3 Velocity analysis.- 7.4
Acceleration analysis.- 7.5 Singularity analysis.- 8 Dynamic modeling of
parallel robots.- 8.1 Introduction.- 8.2 Dynamics of tree-structure robots.-
8.3 Dynamic model of the free moving platform.- 8.4 Inverse and direct
dynamic models of non-redundant parallel robots.- 8.5 Inverse and direct
dynamic models of parallel robots with actuation redundancy.- 8.6 Other
models.- 8.7 Computation of the base dynamic parameters.- 9 Analysis of the
degeneracy conditions for the dynamic model of parallel robots.- 9.1
Introduction.- 9.2 Analysis of the degeneracy conditions of the IDM of PKM.-
9.3 Avoiding infinite input efforts while crossing Type 2 or LPJTS
singularities thanks to an optimal trajectory planning.- 9.4 Example 1: the
five-bar mechanism crossing a Type 2 singularity.- 9.5 Example 2: the
Tripterion crossing a LPJTS singularity.- 9.6 Discussion.- Part III Dynamics
of flexible parallel robots.- 10 Elastodynamic modeling of parallel robots.-
10.1 Introduction.- 10.2 Generalized Newton-Euler equations of a flexible
link.- 10.2.3 Matrix form of the generalized Newton-Euler model for a
flexible clamped-free body.- 10.3 Dynamic model of virtual flexible systems.-
10.4 Dynamic model of a flexible parallel robot.- 10.5 Including the actuator
elasticity.- 10.6 Practical implementation of the algorithm.- 10.7 Case
Study: the DualEMPS.- 11 Computation of natural frequencies.- 11.1
Introduction.- 11.2 Stiffness and inertia matrices of the virtual system.-
11.3 Stiffness and inertia matrices of the PKM.- 11.4 Including the actuator
elasticity.- 11.5 Practical implementation of the algorithm.- 11.6 Case
Studies.- 11.7 Conclusion.- Appendices.- A Calculation of the number of
degrees of freedom of robots with closed chains.- A.1 Introduction.- A.2
Moroskines Method.- A.3 Gogus Method.- A.4 Examples.- B Lagrange equations
with multipliers.- C Computation of wrenches reciprocal to a system of
twists.- C.1 Definitions.- C.2 Condition of reciprocity.- C.3 Computation of
wrenches reciprocal to a system of twists constrained in a plane.- C.4
Computation of wrenches reciprocal to other types of twist systems.- D
Point-to-point trajectory generation.- E Calculation of the terms facc1 ,
facc2 and facc3 in
Chapter 10.- E.1 Calculation of the term facc1.- E.2
Calculation of the term facc2.- E.3 Calculation of the term facc3.- F
Dynamics equations for a clamped-free flexible beam.- F.1 Shape functions for
a free flexible beam.- F.2 Stiffness matrix for a free flexible beam.- F.3
Evaluation of the inertia matrix of a free flexible 3D Bernoulli beam for qe
j = 0.- References.- Index.