Muutke küpsiste eelistusi

Environmental Chemical Analysis 2nd edition [Pehme köide]

(New Jersey Institute of Technology, Newark, USA), (New Jersey Institute of Technology, Newark, USA)
  • Formaat: Paperback / softback, 427 pages, kõrgus x laius: 229x152 mm, kaal: 526 g, 41 Tables, black and white; 161 Line drawings, black and white; 8 Halftones, black and white; 169 Illustrations, black and white
  • Ilmumisaeg: 10-Aug-2018
  • Kirjastus: CRC Press Inc
  • ISBN-10: 0849338387
  • ISBN-13: 9780849338380
  • Pehme köide
  • Hind: 66,49 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 93,79 €
  • Säästad 29%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 427 pages, kõrgus x laius: 229x152 mm, kaal: 526 g, 41 Tables, black and white; 161 Line drawings, black and white; 8 Halftones, black and white; 169 Illustrations, black and white
  • Ilmumisaeg: 10-Aug-2018
  • Kirjastus: CRC Press Inc
  • ISBN-10: 0849338387
  • ISBN-13: 9780849338380
Undergraduate students in environmental science need a foundation in instrumental analysis as much as traditional chemistry majors, but their needs may be quite different. Environmental Chemical Analysis provides an explanation of analytical instrumentation methods for students without a background in analytical chemistry. This second edition features expanded material on sample preparation and quality assurance and control. It also includes new chapters on biological analysis and analysis of environmental particulates. It brings together sampling, sample preparation, and analytical techniques necessary for environmental applications, demonstrated through case studies of actual environmental measurement protocols.





Provides comprehensive coverage of all aspects of environmental chemical analysis Explains analytical instrumentation methods for students approaching the subject from a different angle Includes two new chapters on biological analysis and analysis of environmental particulates Expands material on sample preparation and quality assurance/quality control Winner of Choice 2019 Outstanding Academic Title Award

Arvustused

Environmental Chemical Analysis presents a comprehensive summary of analytical methods and instrumentation in the chemical analysis of pollutants in air, water, and soil. Topics include spectroscopic methodse.g., UV-visible, atomic absorption, infrared, X-ray fluorescence, and inductively coupled plasma emissionas well as a multitude of chromatographic methods and mass spectrometry. The authors explain these methods in considerable detail with relevant operating equations and formulas, useful for both novices and experienced professionals. Up-to-date examples of pollutantsincluding radioactive sourcesare identified. Flow charts and diagrams of instrument operating principles as well as data tables are well organized and clearly labeled; notations and symbols are clear and consistent. Discussions of sampling methods and storage procedures are also included in some detail to show how they may impact results. An area in which other texts in this field are weak is the distinction between precision and accuracy and the ways each may be calculated and expressed, depending on the nature of the problem. The authors provide numerous solved examples of each statistic, and relevant study questions are included at the end of each chapter. The references included are spare but can be easily supplemented with a simple internet search.

--A. S. Casparian, Community College of Rhode Island, CHOICE, March 2019

Summing Up: Highly recommended. Advanced undergraduates through faculty and professionals.

Winner of the Choice 2019 Outstanding Academic Title Award

Preface xix
Authors xxi
Chapter 1 Introduction to Environmental Measurements
1(36)
1.1 Role of Measurement in Environmental Studies
1(5)
1.1.1 Units of Measurement
2(1)
1.1.2 Conversions between Units
3(2)
1.1.3 Significant Figures
5(1)
1.2 Pollutants: Sources and Measurements
6(5)
1.2.1 Classes of Environmental Contaminants
6(1)
1.2.1.1 Products of Combustion
7(1)
1.2.1.2 Industrial Emissions
7(1)
1.2.1.3 Other Sources of Environmental Contamination
8(1)
1.2.2 Regulating the Environment
9(2)
1.3 Design of Environmental Studies
11(2)
1.3.1 Sampling and Analysis
12(1)
1.4 Basic Statistical Data Handling
13(6)
1.4.1 Errors in Quantitative Analysis
13(1)
1.4.2 Statistics of Repeated Measurements: Precision
14(1)
1.4.2.1 Precision and Standard Deviation
14(2)
1.4.3 Distribution of Error
16(2)
1.4.4 Confidence Interval and the t-Distribution
18(1)
1.4.4.1 Estimation of Mean from Several Sets of Measurements
18(1)
1.4.4.2 Estimation of Standard Deviation from Several Sets of Measurements
19(1)
1.5 Significance Tests
19(6)
1.5.1 Hypothesis Testing
19(1)
1.5.1.1 Comparison between a Measured and a Known Value
20(1)
1.5.1.2 Comparison of the Mean of Two Samples
20(2)
1.5.1.3 Comparison of Standard Deviations Using the F-Test
22(2)
1.5.2 Outliers
24(1)
1.5.2.1 Rule of the Huge Error
24(1)
1.5.2.2 Dixon Test for Rejection of Outliers
24(1)
1.5.3 Reporting Data
25(1)
1.6 Standards and Calibration
25(3)
1.6.1 Calibration Methods
26(1)
1.6.2 Standard Addition Method
26(2)
1.7 Performance of Analytical Methods: Figures of Merit
28(9)
1.7.1 Sensitivity
28(1)
1.7.2 Detection Limit
29(1)
1.7.3 Range of Quantitation
30(1)
1.7.4 Validation of New Methods
30(2)
Study Questions
32(5)
Chapter 2 Environmental Sampling
37(22)
2.1 The Sampling Plan
37(7)
2.1.1 Spatial and Temporal Variability
38(1)
2.1.2 Development of the Plan
39(1)
2.1.3 Sampling Strategies
40(2)
2.1.3.1 Systematic Sampling
42(1)
2.1.3.2 Random Sampling
42(1)
2.1.3.3 Judgmental Sampling
42(1)
2.1.3.4 Stratified Sampling
43(1)
2.1.3.5 Haphazard Sampling
43(1)
2.1.3.6 Continuous Monitoring
43(1)
2.2 Types of Samples
44(1)
2.3 Sampling and Analysis
45(2)
2.3.1 Samples in the Laboratory
46(1)
2.4 Statistical Aspects of Sampling
47(2)
2.5 Water Sampling
49(3)
2.5.1 Surface Water Sampling
49(2)
2.5.2 Ground Water Well Sampling
51(1)
2.6 Biological Tissue Sampling
52(1)
2.7 Soil Sampling
52(2)
2.8 Sampling Stratified Levels in Containers
54(1)
2.9 Preservation of Samples
55(4)
2.9.1 Volatilization
55(1)
2.9.2 Choice of Proper Containers
55(2)
2.9.3 Absorption of Gases from the Atmosphere
57(1)
2.9.4 Chemical Changes
57(1)
2.9.5 Sample Preservation for Soil, Sludges, and Hazardous Wastes
57(1)
Study Questions
58(1)
Chapter 3 Spectroscopic Methods
59(50)
3.1 Spectroscopic Methods for Environmental Analysis
59(7)
3.1.1 Properties of Electromagnetic Radiation
59(2)
3.1.2 The Electromagnetic Spectrum
61(1)
3.1.3 Radiation and Matter
62(4)
3.2 Absorption Spectroscopy
66(3)
3.2.1 Beer's Law
66(3)
3.3 Emission Spectroscopy
69(3)
3.3.1 Fluorescence
70(1)
3.3.2 Atomic Emission
71(1)
3.4 Spectroscopic Apparatus
72(4)
3.4.1 Light Sources
72(1)
3.4.2 Wavelength Selection
73(1)
3.4.2.1 Filters
73(1)
3.4.2.2 Monochromators
74(2)
3.4.3 Detectors
76(1)
3.5 Ultraviolet and Visible Absorption Spectroscopy
76(6)
3.5.1 UV and Visible Instrumentation
78(1)
3.5.1.1 Light Sources
78(1)
3.5.1.2 UV-Vis Detectors
78(2)
3.5.1.3 Ultraviolet: Visible Spectroscopy Samples
80(1)
3.5.2 Colorimetry
80(2)
3.6 Infrared Spectroscopy
82(9)
3.6.1 Scanning Infrared Instrumentation
83(1)
3.6.1.1 IR Sources
83(1)
3.6.1.2 Infrared Monochromators
84(1)
3.6.2 Fourier Transform Infrared Spectrometry
84(3)
3.6.2.1 Advantages of FTIR
87(1)
3.6.2.2 Samples for Infrared Spectroscopy
88(3)
3.7 Atomic Absorption Spectroscopy
91(7)
3.7.1 Flame Atomic Absorbance Spectroscopy
92(2)
3.7.2 Graphite Furnace Atomic Absorption Spectrometry
94(2)
3.7.3 Interferences in Atomic Absorption
96(1)
3.7.3.1 Spectral Interference
96(1)
3.7.3.2 Chemical Interference
96(1)
3.7.3.3 Ionization Interference
97(1)
3.7.3.4 Background Correction in Atomic Absorption Spectrometry
97(1)
3.8 Inductively Coupled Plasma Emission Spectroscopy
98(3)
3.8.1 Comparison of Atomic Spectroscopic Methods
100(1)
3.9 X-Ray Fluorescence
101(5)
3.9.1 Wavelength-Dispersive XRF versus Energy-Dispersive XRF
102(1)
3.9.2 X-Ray Instrumentation
102(1)
3.9.2.1 Sources
102(1)
3.9.2.2 X-Ray Detectors
103(1)
3.9.2.3 X-Ray Fluorescence Samples
104(2)
3.10 Hyphenated Spectroscopic Methods
106(3)
Study Questions
106(3)
Chapter 4 Chromatographic Methods
109(52)
4.1 Principles of Chromatography
109(10)
4.1.1 Column Efficiency
112(7)
4.1.2 The General Elution Problem
119(1)
4.2 Quantitation in Chromatography
119(2)
4.2.1 External Standard Method
120(1)
4.2.2 The Internal Standard Method
120(1)
4.3 Gas Chromatography
121(9)
4.3.1 Injection Devices
121(2)
4.3.2 Columns
123(2)
4.3.2.1 Packed Columns
125(1)
4.3.2.2 Open Tubular Columns
126(2)
4.3.2.3 Column Temperature
128(2)
4.4 GC Detectors
130(8)
4.4.1 Thermal Conductivity Detector
131(1)
4.4.2 Flame Ionization Detector
132(1)
4.4.3 Electron Capture Detector
133(1)
4.4.4 Photoionization Detector
134(1)
4.4.5 Flame Photometric Detector
135(1)
4.4.6 Pulsed Flame Photometric Detector
136(1)
4.4.7 Thermionic or Nitrogen-Phosphorous Detector
137(1)
4.4.8 Pulsed Discharge Detector
137(1)
4.4.9 Mass Selective Detector
137(1)
4.4.10 Comparison of Detectors
138(1)
4.5 High-Performance Liquid Chromatography
138(3)
4.5.1 Reverse Phase Liquid Chromatography
139(2)
4.5.2 Normal Phase Liquid Chromatography
141(1)
4.6 HPLC Instrumentation
141(7)
4.6.1 Solvent Delivery Systems
141(2)
4.6.2 Solvent Gradient Systems
143(1)
4.6.3 Sample Injectors
144(1)
4.6.4 HPLC Columns
144(1)
4.6.4.1 Precolumns and Guard Columns
144(1)
4.6.4.2 Analytical Columns
145(1)
4.6.4.3 Eluents
146(2)
4.7 HPLC Detectors
148(5)
4.7.1 UV Absorption Detectors
149(2)
4.7.2 Fluorescence Detectors
151(1)
4.7.3 Evaporative Light Scattering Detector
152(1)
4.7.4 Mass Spectrometric Detection
153(1)
4.8 Ion Chromatography
153(2)
4.9 Supercritical Fluid Chromatography
155(3)
4.9.1 SFC Instrumentation
157(1)
4.10 Applications of Chromatography in Environmental Analysis
158(3)
Study Questions
159(2)
Chapter 5 Mass Spectrometry
161(30)
5.1 Interpretation of Spectra
161(4)
5.2 Basic Instrumentation
165(2)
5.2.1 Vacuum System
166(1)
5.2.2 Inlet
166(1)
5.3 Ion Sources
167(5)
5.3.1 Electron Impact Ionization
168(1)
5.3.2 Chemical Ionization
169(1)
5.3.3 Atmospheric Pressure Ionization Sources
170(1)
5.3.4 Proton Transfer Reaction MS
171(1)
5.4 Mass Analyzers
172(6)
5.4.1 Quadrupole Mass Analyzer
173(1)
5.4.2 Magnetic Sector Mass Analyzer
174(1)
5.4.3 The Ion Trap Mass Analyzer
175(3)
5.5 Ion Detectors
178(1)
5.6 Gas Chromatography MS
179(2)
5.7 Liquid Chromatography MS
181(1)
5.8 Inductively Coupled Plasma MS
182(3)
5.9 Data Collection
185(2)
5.10 Library Searching Techniques
187(4)
Study Questions
189(2)
Chapter 6 Sample Preparation Techniques
191(26)
6.1 Extraction of Organic Analytes from Liquid Samples
192(7)
6.1.1 Liquid---Liquid Extraction
192(1)
6.1.1.1 Successive Extractions
193(1)
6.1.1.2 Instrumentation for LLE
194(1)
6.1.1.3 Continuous LLE
194(2)
6.1.2 Solid-Phase Extraction
196(1)
6.1.2.1 The SPE Process
197(1)
6.1.2.2 Advantages of SPE
198(1)
6.1.3 Solid-Phase Microextraction
199(1)
6.2 Extraction of Organic Analytes from Solid Samples
199(7)
6.2.1 Soxhlet Extraction
200(1)
6.2.2 Accelerated Solvent Extraction
201(2)
6.2.3 Ultrasonic Extraction of Organics
203(1)
6.2.4 Supercritical Fluid Extraction
203(1)
6.2.4.1 Instrumentation
204(1)
6.2.4.2 Choosing SFE Conditions
205(1)
6.2.4.3 Advantages of SFE
205(1)
6.3 Post-Extraction Procedures
206(2)
6.3.1 Concentration of Sample Extracts
206(1)
6.3.2 Sample Cleanup
206(2)
6.4 Extraction of Metals from Sample Matrices
208(5)
6.4.1 Acid Digestion of Samples for Determination of Metals
209(1)
6.4.2 Extraction Procedures
209(1)
6.4.3 Microwave Digestion
209(1)
6.4.4 Ultrasonic Extraction
210(1)
6.4.5 Organic Extraction of Metals
210(1)
6.4.5.1 Formation of Metal Chelates
210(3)
6.5 Speciation of Metals in Environmental Samples
213(4)
Study Questions
215(2)
Chapter 7 Chemical Methods
217(18)
7.1 Types of Chemical Reactions
217(10)
7.1.1 Precipitation
219(1)
7.1.2 Complexation and Chelation Reactions
219(1)
7.1.3 Oxidation/Reduction Reactions
220(1)
7.1.4 Derivatization Reactions
221(2)
7.1.4.1 Alkylation and Acylation
223(1)
7.1.4.2 Sylilation
223(1)
7.1.4.3 Diazotization
224(1)
7.1.4.4 Selection of Derivatizing Reagent
224(3)
7.2 Wet Methods
227(4)
7.2.1 Titrations
227(1)
7.2.2 Titration Calculations
227(2)
7.2.3 Types of Titrations
229(2)
7.3 Colorimetric Methods
231(4)
7.3.1 Colorimetric Indicating Tubes for Air Pollutants
232(1)
Study Questions
233(1)
Suggested Reading
233(2)
Chapter 8 Electrochemical Methods
235(8)
8.1 Potentiometric Measurements
235(4)
8.1.1 pH Measurement
235(2)
8.1.2 Other Specific Ion Electrodes
237(2)
8.2 Determination of Metals by Voltammetry
239(4)
Study Questions
241(2)
Chapter 9 Radiochemical Methods
243(20)
9.1 Units of Measurement
243(1)
9.2 Instruments for Measuring Radioactivity
244(3)
9.2.1 Gas: Flow Proportional Counters
244(1)
9.2.2 Alpha Scintillation Counter
245(1)
9.2.3 Liquid Scintillation Counters
245(1)
9.2.4 Alpha Spectrometers
246(1)
9.2.5 Gamma Spectrometers
246(1)
9.3 Determination of Gross Alpha and Gross Beta Radioactivity
247(4)
9.3.1 Evaporation Method
247(1)
9.3.1.1 Gross Activity of the Sample
247(1)
9.3.1.2 Activity of Dissolved and Suspended Matter
248(1)
9.3.1.3 Activity of Semisolid Samples
249(1)
9.3.2 Coprecipitation Method for Gross Alpha Activity
250(1)
9.4 Measurement of Specific Radionuclides
251(12)
9.4.1 Radium
251(1)
9.4.1.1 Precipitation Method and Alpha Counting
252(1)
9.4.1.2 Precipitation and Emanation Method to Measure Radium as Radon-222
252(1)
9.4.1.3 Sequential Precipitation Method
253(1)
9.4.1.4 Measurement of Radium-224 by Gamma Spectroscopy
254(1)
9.4.2 Radon
254(1)
9.4.3 Uranium
255(1)
9.4.3.1 Determination of Total Alpha Activity
255(1)
9.4.3.2 Determination of Isotopic Content of Uranium Alpha Activity
256(1)
9.4.4 Radioactive Strontium
256(2)
9.4.5 Tritium
258(1)
9.4.6 Radioactive Cesium
259(1)
Study Questions
260(1)
Suggested Reading
261(2)
Chapter 10 Approaches to the Measurement of Biological Pollutants
263(22)
10.1 Introduction
263(1)
10.2 The Microbiological Approach
263(1)
10.3 Fluorescence Microscope
264(2)
10.4 Molecular Biology Techniques
266(1)
10.5 The PCR and the Sequencing Approach
267(1)
10.6 Isolation and Purification of DNA
268(11)
10.6.1 Example Method for DNA Isolation from Bacteria Such as E. coli from a Bacterial Culture
268(2)
10.6.1.1 DNA Amplification by PCR
270(6)
10.6.1.2 Gel Electrophoresis
276(1)
10.6.1.3 Fluorescent In Situ Hybridization and the Analysis of the Single Cell
277(2)
10.7 Coliform Groups of Bacteria
279(2)
10.8 Multiple Tube Fermentation/Most Probable Number Index Test
281(1)
10.9 Radiometric Detection of Fecal Coliforms
282(1)
10.10 Bioluminescence Test
283(1)
10.11 Seven-Hour Fecal Coliform Test
283(2)
Study Questions
283(1)
Suggested Reading
284(1)
Chapter 11 Methods for Air Analysis
285(38)
11.1 Keeping the Air Clean
285(1)
11.2 Determination of Gaseous Species
286(8)
11.2.1 Carbon Monoxide
287(1)
11.2.1.1 Carbon Monoxide by Nondispersive Infrared Absorption
287(2)
11.2.2 Carbon Dioxide and Carbon Monoxide by Gas Chromatography
289(1)
11.2.3 Determination of Sulfur Species
289(1)
11.2.4 Determination of Nitrogen Oxides in Air
290(2)
11.2.5 Determination of Ozone in Air Samples
292(1)
11.2.6 Determination of Radon in Air
292(1)
11.2.6.1 Sampling for Radon
292(1)
11.2.6.2 Analysis of Samples for Radon
293(1)
11.3 Determination of Volatile Organic Compounds
294(12)
11.3.1 Adsorbent Trap Sampling
294(5)
11.3.1.1 Thermal Desorption of VOC Samples
299(1)
11.3.1.2 Solvent Desorption of VOC Samples
300(1)
11.3.2 Whole Air Sampling
301(2)
11.3.2.1 Concentration of Analytes from Whole Air Samples
303(1)
11.3.3 GC Analysis of VOC
304(1)
11.3.3.1 Example Determination: VOC in Ambient Air by Trapping and Thermal Desorption
304(2)
11.4 Other Methods for Analysis of Volatiles and Gases
306(6)
11.4.1 Determination of Non-Methane Organic Carbon
306(1)
11.4.2 Annular Denuder Methods for Air Analysis
307(2)
11.4.3 Impinger Methods for Air Sampling
309(2)
11.4.3.1 Colorimetric Indicating Tubes for Air Pollutants
311(1)
11.5 Determination of Pollutants in Particulate Material
312(6)
11.5.1 Particle-Size Fractionators
314(1)
11.5.2 Filters for Air Sampling
315(1)
11.5.2.1 Determination of Total Suspended Particulates in Air
316(1)
11.5.3 Division of Filters
316(1)
11.5.3.1 Determination of Metals in Airborne Particulates
317(1)
11.6 Example Determination: Lead and PAH in airborne Particulates
318(1)
11.6.1 Determination of Anions in Airborne Particulate
318(1)
11.6.2 Determination of Organic Species in Particulate Material
318(1)
11.7 Field Methods for Air Analysis
319(1)
11.8 Methods for Stack Monitoring
320(3)
Study Questions
321(2)
Chapter 12 Methods for Water Analysis
323(30)
12.1 Sample Collection and Preservation
324(2)
12.2 Potentiometry for Ions and Gases in Aqueous Solution
326(3)
12.3 Metals in Water Samples
329(9)
12.3.1 Sample Filtration
330(1)
12.3.2 Digestion of Metal Samples
331(1)
12.3.3 Preconcentrating the Sample
331(1)
12.3.4 Separating "Labile" Metal Species
332(1)
12.3.4.1 Atomic Absorption Methods
332(3)
12.3.5 Inductively Coupled Plasma Methods
335(1)
12.3.6 Determination of Metals by Voltammetry
335(2)
12.3.6.1 Example Determination: Chromium in Fresh Water
337(1)
12.4 Inorganic Anions in Water
338(1)
12.4.1 Ion Chromatographic Analysis for Common Anions
338(1)
12.5 Organic Compounds in Water
339(4)
12.5.1 Biochemical Oxygen Demand
341(1)
12.5.2 Chemical Oxygen Demand
342(1)
12.5.3 Total Organic Carbon
342(1)
12.6 Volatile Organic Compounds in Water
343(4)
12.6.1 Measurement of VOCs Using Purge and Trap
343(3)
12.6.2 Head Space Screening for VOCs
346(1)
12.6.3 Screening for VOCs by Solid-Phase Microextraction
347(1)
12.7 Semivolatile Organics in Water
347(3)
12.7.1 Extractable Base/Neutrals and Acids
347(1)
12.7.2 Pesticides
348(1)
12.7.2.1 Example Determination: Haloacetic Acid and Trichlorophenol in Drinking Water
349(1)
12.8 Field Methods for Water
350(3)
Study Questions
350(3)
Chapter 13 Methods for Analysis of Solid Samples
353(26)
13.1 Sampling
354(3)
13.1.1 Preparation of Solid Samples
356(1)
13.2 Measurement of Soil pH
357(1)
13.3 Analysis of Metals in Soil and Solids
358(3)
13.3.1 Determination of Mercury
360(1)
13.3.2 Determination of Arsenic and Selenium
360(1)
13.3.3 Example Determination: Simultaneous Measurement of Metals Such as Pb, Cr, Fe, Cd, and Ba in Dry Sewage Sludge
360(1)
13.3.4 Analysis of Solids with X-Ray Fluorescence
361(1)
13.4 Analysis of Soil for Total Nitrogen
361(1)
13.5 Colorimetric Tests for Soil and Sludge Analysis
361(1)
13.5.1 Determination of Phosphorous
362(1)
13.5.2 Determination of Aluminum
362(1)
13.6 Measurement of Total Organic Carbon in Soil
362(1)
13.7 Volatile Organics in Soils or Solids
363(2)
13.7.1 Measurement of VOCs Using Purge and Trap
363(1)
13.7.2 Head Space Analysis
364(1)
13.7.3 Determination of VOC Using SPME
365(1)
13.8 Total Petroleum Hydrocarbon in Soil and Sludge
365(1)
13.9 Semivolatile Organics in Soil and Sludge
366(7)
13.9.1 Example Determination: Dioxin in a Herbicide
366(3)
13.9.2 Organochlorine Pesticides and Polychlorinated Biphenyls in Solids
369(4)
13.10 Leaching Tests for Wastes
373(1)
13.11 Immunoassay Tests
374(2)
13.12 Field Methods for Solids
376(3)
Study Questions
376(3)
Chapter 14 Quality Assurance and Quality Control
379(16)
14.1 Determination of Accuracy and Precision
381(2)
14.2 Statistical Control
383(4)
14.2.1 Control Charts
383(1)
14.2.2 Control Samples
384(2)
14.2.3 Background or Control Site Samples
386(1)
14.3 Performance Evaluation Samples
387(1)
14.3.1 Preparation of Evaluation Samples
387(1)
14.3.2 Stability of Evaluation Samples
388(1)
14.4 Contamination Control
388(3)
14.4.1 Blanks
389(2)
14.5 QA for the Example Determinations
391(4)
14.5.1 Determination of VOC in Air by Tenax Trapping and Thermal Desorption
392(1)
14.5.2 Determination of Haloacetic Acid and Trichlorophenol in Water
392(1)
14.5.3 Determination of Metals in Dry Sludge
393(1)
Study Questions
394(1)
Chapter 15 New Classes of Emerging Pollutants: Their Classification, Extractions, and Analysis
395(14)
15.1 An Over view
395(1)
15.2 Sample Extractions
395(6)
15.3 Analysis
401(8)
15.3.1 Nonionic Surfactants: Alkyl Phenols and Alkyl Phenol Ethoxylates
402(1)
15.3.2 Flame Retardants, Plasticizers, and Lubricants: Organophosphates
402(1)
15.3.3 Pharmaceuticals and Personal Care Products
403(1)
15.3.4 Steroids and Hormones
403(1)
15.3.5 Nanomaterials
404(1)
15.3.5.1 Screening and Characterization of Nanoparticles
404(2)
15.3.5.2 Separation of Nanoparticles
406(1)
Study Questions
406(1)
Suggested Reading
407(2)
Index 409
Somenath Mitra is a Distinguished Professor of Chemistry and Environmental Science. He has published over 125 refereed manuscripts, 7 book chapters, presented over 250 in national and international conferences, nearly a quarter of them are invited lectures, and is the coauthor and editor of two books. He is the co-winner of the Thomas Alva Edison Patent Award from Research and Development Council of New Jersey, November 2009.



Pradyot Patnaik, Ph.D., is currently the Director of the Environmental Laboratory of Interstate Environmental Commission at Staten Island, New York and is a researcher at the Center for Environmental Science at City University of New York at Staten Island. Dr Patnaik teaches as an Adjunct Professor at the New Jersey Institute of Technology in Newark, New Jersey and at the Community College of Philadelphia. He was formerly the Director of the Special Research Project at the Environmental Testing and Technologies in Westmont, New Jersey, and after that, the Director of Rancocas Environmental Laboratory in Delanco, New Jersey. Earlier Dr. Patnaik was a post-doctoral research scientist at Cornell University, Ithaca, New York. He had obtained a B.S. and M.S. in Chemistry from Utkal University in India and a Ph.D. from the Indian Institute of Technology, Bombay.



Barbara B. Kebbekus, New Jersey Institute of Technology, Newark, USA.