Muutke küpsiste eelistusi

Evolution Equations of von Karman Type 1st ed. 2015 [Pehme köide]

  • Formaat: Paperback / softback, 140 pages, kõrgus x laius: 235x155 mm, kaal: 2526 g, XVI, 140 p., 1 Paperback / softback
  • Sari: Lecture Notes of the Unione Matematica Italiana 17
  • Ilmumisaeg: 22-Oct-2015
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3319209965
  • ISBN-13: 9783319209968
  • Pehme köide
  • Hind: 44,06 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 51,84 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 140 pages, kõrgus x laius: 235x155 mm, kaal: 2526 g, XVI, 140 p., 1 Paperback / softback
  • Sari: Lecture Notes of the Unione Matematica Italiana 17
  • Ilmumisaeg: 22-Oct-2015
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3319209965
  • ISBN-13: 9783319209968

In these notes we consider two kinds of nonlinear evolution problems of von Karman type on Euclidean spaces of arbitrary even dimension. Each of these problems consists of a system that results from the coupling of two highly nonlinear partial differential equations, one hyperbolic or parabolic and the other elliptic. These systems take their name from a formal analogy with the von Karman equations in the theory of elasticity in two dimensional space. We establish local (respectively global) results for strong (resp., weak) solutions of these problems and corresponding well-posedness results in the Hadamard sense. Results are found by obtaining regularity estimates on solutions which are limits of a suitable Galerkin approximation scheme. The book is intended as a pedagogical introduction to a number of meaningful application of classical methods in nonlinear Partial Differential Equations of Evolution. The material is self-contained and most proofs are given in full detail.

The interested reader will gain a deeper insight into the power of nontrivial a priori estimate methods in the qualitative study of nonlinear differential equations.

1 Operators, Spaces, and Main Results
1(34)
1.1 Functional Framework
1(10)
1.2 Properties of N
11(11)
1.3 Elliptic Estimates on f
22(3)
1.4 Statement of Results
25(8)
1.5 Friedrichs' Mollifiers
33(2)
2 Weak Solutions
35(24)
2.1 Existence of Weak Solutions
36(12)
2.2 Continuity at t = 0
48(8)
2.3 Uniqueness Implies Continuity
56(3)
3 Strong Solutions, m + k ≥ 4
59(20)
3.1 Regularity of N (f, u(m-1))
59(7)
3.2 Well-Posedness
66(6)
3.3 Existence
72(7)
4 Semi-strong Solutions, m = 2, k = 1
79(22)
4.1 Two Technical Lemmas
79(3)
4.2 Lipschitz Estimates
82(4)
4.3 Well-Posedness
86(9)
4.4 Existence
95(6)
5 The Parabolic Case
101(24)
5.1 Well-Posedness
101(4)
5.2 Existence, k ≥ 1
105(4)
5.3 Existence, k = 0
109(7)
5.4 Weak Solutions
116(1)
5.5 The Case m = 2, k = 0
117(8)
6 The Hardy Space H1 and the Case m = 1
125(12)
6.1 The Space H1
125(8)
6.2 The Classical von Karman Equations
133(4)
Bibliography 137(2)
Index 139