Muutke küpsiste eelistusi

E-raamat: Evolution Equations of von Karman Type

  • Formaat - PDF+DRM
  • Hind: 49,39 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

In these notes we consider two kinds of nonlinear evolution problems of von Karman type on Euclidean spaces of arbitrary even dimension. Each of these problems consists of a system that results from the coupling of two highly nonlinear partial differential equations, one hyperbolic or parabolic and the other elliptic. These systems take their name from a formal analogy with the von Karman equations in the theory of elasticity in two dimensional space. We establish local (respectively global) results for strong (resp., weak) solutions of these problems and corresponding well-posedness results in the Hadamard sense. Results are found by obtaining regularity estimates on solutions which are limits of a suitable Galerkin approximation scheme. The book is intended as a pedagogical introduction to a number of meaningful application of classical methods in nonlinear Partial Differential Equations of Evolution. The material is self-contained and most proofs are given in full detail.

The interested reader will gain a deeper insight into the power of nontrivial a priori estimate methods in the qualitative study of nonlinear differential equations.

1 Operators, Spaces, and Main Results
1(34)
1.1 Functional Framework
1(10)
1.2 Properties of N
11(11)
1.3 Elliptic Estimates on f
22(3)
1.4 Statement of Results
25(8)
1.5 Friedrichs' Mollifiers
33(2)
2 Weak Solutions
35(24)
2.1 Existence of Weak Solutions
36(12)
2.2 Continuity at t = 0
48(8)
2.3 Uniqueness Implies Continuity
56(3)
3 Strong Solutions, m + k ≥ 4
59(20)
3.1 Regularity of N (f, u(m-1))
59(7)
3.2 Well-Posedness
66(6)
3.3 Existence
72(7)
4 Semi-strong Solutions, m = 2, k = 1
79(22)
4.1 Two Technical Lemmas
79(3)
4.2 Lipschitz Estimates
82(4)
4.3 Well-Posedness
86(9)
4.4 Existence
95(6)
5 The Parabolic Case
101(24)
5.1 Well-Posedness
101(4)
5.2 Existence, k ≥ 1
105(4)
5.3 Existence, k = 0
109(7)
5.4 Weak Solutions
116(1)
5.5 The Case m = 2, k = 0
117(8)
6 The Hardy Space H1 and the Case m = 1
125(12)
6.1 The Space H1
125(8)
6.2 The Classical von Karman Equations
133(4)
Bibliography 137(2)
Index 139