Muutke küpsiste eelistusi

Feedback Control of Dynamic Systems 8th edition [Kõva köide]

  • Formaat: Hardback, 928 pages, kõrgus x laius x paksus: 241x180x36 mm, kaal: 1310 g
  • Ilmumisaeg: 29-Jan-2018
  • Kirjastus: Pearson
  • ISBN-10: 0134685717
  • ISBN-13: 9780134685717
Teised raamatud teemal:
  • Formaat: Hardback, 928 pages, kõrgus x laius x paksus: 241x180x36 mm, kaal: 1310 g
  • Ilmumisaeg: 29-Jan-2018
  • Kirjastus: Pearson
  • ISBN-10: 0134685717
  • ISBN-13: 9780134685717
Teised raamatud teemal:

For courses in electrical & computing engineering.

 

Feedback control fundamentals with context, case studies, and a focus on design

Feedback Control of Dynamic Systems, 8th Edition, covers the material that every engineer needs to know about feedback control—including concepts like stability, tracking, and robustness. Each chapter presents the fundamentals along with comprehensive, worked-out examples, all within a real-world context and with historical background provided. The text is devoted to supporting readers equally in their need to grasp both traditional and more modern topics of digital control, and the author focuses on design as a theme early on, rather than focusing on analysis first and incorporating design much later. An entire chapter is devoted to comprehensive case studies, and the 8th Edition has been revised with up-to-date information, along with brand-new sections, problems, and examples.

Preface xiii
1 An Overview and Brief History of Feedback Control 1(23)
A Perspective on Feedback Control
1(1)
Chapter Overview
2(1)
1.1 A Simple Feedback System
3(3)
1.2 A First Analysis of Feedback
6(4)
1.3 Feedback System Fundamentals
10(1)
1.4 A Brief History
11(7)
1.5 An Overview of the Book
18(1)
Summary
19(1)
Review Questions
20(1)
Problems
20(4)
2 Dynamic Models 24(65)
A Perspective on Dynamic Models
24(1)
Chapter Overview
25(1)
2.1 Dynamics of Mechanical Systems
25(24)
2.1.1 Translational Motion
25(7)
2.1.2 Rotational Motion
32(11)
2.1.3 Combined Rotation and Translation
43(3)
2.1.4 Complex Mechanical Systems (W)**
46(1)
2.1.5 Distributed Parameter Systems
46(2)
2.1.6 Summary: Developing Equations of Motion for Rigid Bodies
48(1)
2.2 Models of Electric Circuits
49(5)
2.3 Models of Electromechanical Systems
54(7)
2.3.1 Loudspeakers
54(2)
2.3.2 Motors
56(4)
2.3.3 Gears
60(1)
2.4 Heat and Fluid-Flow Models
61(12)
2.4.1 Heat Flow
62(4)
2.4.2 Incompressible Fluid Flow
66(7)
2.5 Historical Perspective
73(3)
Summary
76(1)
Review Questions
76(1)
Problems
77(12)
3 Dynamic Response 89(97)
A Perspective on System Response
89(1)
Chapter Overview
90(1)
3.1 Review of Laplace Transforms
90(33)
3.1.1 Response by Convolution
91(5)
3.1.2 Transfer Functions and Frequency Response
96(10)
3.1.3 The L_ Laplace Transform
106(2)
3.1.4 Properties of Laplace Transforms
108(2)
3.1.5 Inverse Laplace Transform by Partial-Fraction Expansion
110(2)
3.1.6 The Final Value Theorem
112(2)
3.1.7 Using Laplace Transforms to Solve Differential Equations
114(2)
3.1.8 Poles and Zeros
116(1)
3.1.9 Linear System Analysis Using Matlab
117(6)
3.2 System Modeling Diagrams
123(5)
3.2.1 The Block Diagram
123(4)
3.2.2 Block-Diagram Reduction Using Matlab
127(1)
3.2.3 Mason's Rule and the Signal Flow Graph (W)
128(1)
3.3 Effect of Pole Locations
128(9)
3.4 Time-Domain Specifications
137(5)
3.4.1 Rise Time
137(1)
3.4.2 Overshoot and Peak Time
138(1)
3.4.3 Settling Time
139(3)
3.5 Effects of Zeros and Additional Poles
142(10)
3.6 Stability
152(10)
3.6.1 Bounded Input-Bounded Output Stability
152(2)
3.6.2 Stability of LTI Systems
154(1)
3.6.3 Routh's Stability Criterion
155(7)
3.7 Obtaining Models from Experimental Data: System Identification (W)
162(1)
3.8 Amplitude and Time Scaling (W)
162(1)
3.9 Historical Perspective
162(1)
Summary
163(2)
Review Questions
165(1)
Problems
165(21)
4 A First Analysis of Feedback 186(62)
A Perspective on the Analysis of Feedback
186(1)
Chapter Overview
187(1)
4.1 The Basic Equations of Control
188(6)
4.1.1 Stability
189(1)
4.1.2 Tracking
190(1)
4.1.3 Regulation
191(1)
4.1.4 Sensitivity
192(2)
4.2 Control of Steady-State Error to Polynomial Inputs: System Type
194(8)
4.2.1 System Type for Tracking
195(5)
4.2.2 System Type for Regulation and Disturbance Rejection
200(2)
4.3 The Three-Term Controller: PID Control
202(20)
4.3.1 Proportional Control (P)
202(2)
4.3.2 Integral Control (I)
204(3)
4.3.3 Derivative Control (D)
207(1)
4.3.4 Proportional Plus Integral Control (PI)
207(4)
4.3.5 PID Control
211(5)
4.3.6 Ziegler-Nichols Tuning of the PID Controller
216(6)
4.4 Feedforward Control by Plant Model Inversion
222(2)
4.5 Introduction to Digital Control (W)
224(1)
4.6 Sensitivity of Time Response to Parameter Change (W)
225(1)
4.7 Historical Perspective
225(2)
Summary
227(1)
Review Questions
228(1)
Problems
229(19)
5 The Root-Locus Design Method 248(83)
A Perspective on the Root-Locus Design Method
248(1)
Chapter Overview
249(1)
5.1 Root Locus of a Basic Feedback System
249(5)
5.2 Guidelines for Determining a Root Locus
254(12)
5.2.1 Rules for Determining a Positive (180°) Root Locus
256(6)
5.2.2 Summary of the Rules for Determining a Root Locus
262(1)
5.2.3 Selecting the Parameter Value
263(3)
5.3 Selected Illustrative Root Loci
266(13)
5.4 Design Using Dynamic Compensation
279(11)
5.4.1 Design Using Lead Compensation
280(5)
5.4.2 Design Using Lag Compensation
285(3)
5.4.3 Design Using Notch Compensation
288(2)
5.4.4 Analog and Digital Implementations (W)
290(1)
5.5 Design Examples Using the Root Locus
290(11)
5.6 Extensions of the Root-Locus Method
301(8)
5.6.1 Rules for Plotting a Negative (0°) Root Locus
301(3)
5.6.2 Successive Loop Closure
304(5)
5.6.3 Time Delay (W)
309(1)
5.7 Historical Perspective
309(2)
Summary
311(2)
Review Questions
313(1)
Problems
313(18)
6 The Frequency-Response Design Method 331(126)
A Perspective on the Frequency-Response Design Method
331(1)
Chapter Overview
332(1)
6.1 Frequency Response
332(22)
6.1.1 Bode Plot Techniques
340(12)
6.1.2 Steady-State Errors
352(2)
6.2 Neutral Stability
354(3)
6.3 The Nyquist Stability Criterion
357(14)
6.3.1 The Argument Principle
357(1)
6.3.2 Application of The Argument Principle to Control Design
358(13)
6.4 Stability Margins
371(9)
6.5 Bode's Gain-Phase Relationship
380(5)
6.6 Closed-Loop Frequency Response
385(1)
6.7 Compensation
386(35)
6.7.1 PD Compensation
387(1)
6.7.2 Lead Compensation (W)
388(10)
6.7.3 PI Compensation
398(1)
6.7.4 Lag Compensation
398(6)
6.7.5 PID Compensation
404(7)
6.7.6 Design Considerations
411(2)
6.7.7 Specifications in Terms of the Sensitivity Function
413(5)
6.7.8 Limitations on Design in Terms of the Sensitivity Function
418(3)
6.8 Time Delay
421(2)
6.8.1 Time Delay via the Nyquist Diagram (W)
423(1)
6.9 Alternative Presentation of Data
423(5)
6.9.1 Nichols Chart
423(5)
6.9.2 The Inverse Nyquist Diagram (W)
428(1)
6.10 Historical Perspective
428(1)
Summary
429(2)
Review Questions
431(1)
Problems
432(25)
7 State-Space Design 457(157)
A Perspective on State-Space Design
457(1)
Chapter Overview
458(1)
7.1 Advantages of State-Space
458(2)
7.2 System Description in State-Space
460(6)
7.3 Block Diagrams and State-Space
466(3)
7.4 Analysis of the State Equations
469(17)
7.4.1 Block Diagrams and Canonical Forms
469(12)
7.4.2 Dynamic Response from the State Equations
481(5)
7.5 Control-Law Design for Full-State Feedback
486(14)
7.5.1 Finding the Control Law
487(9)
7.5.2 Introducing the Reference Input with Full-State Feedback
496(4)
7.6 Selection of Pole Locations for Good Design
500(12)
7.6.1 Dominant Second-Order Poles
500(2)
7.6.2 Symmetric Root Locus (SRL)
502(9)
7.6.3 Comments on the Methods
511(1)
7.7 Estimator Design
512(13)
7.7.1 Full-Order Estimators
512(6)
7.7.2 Reduced-Order Estimators
518(4)
7.7.3 Estimator Pole Selection
522(3)
7.8 Compensator Design: Combined Control Law and Estimator (W)
525(12)
7.9 Introduction of the Reference Input with the Estimator (W)
537(12)
7.9.1 General Structure for the Reference Input
539(9)
7.9.2 Selecting the Gain
548(1)
7.10 Integral Control and Robust Tracking
549(21)
7.10.1 Integral Control
549(2)
7.10.2 Robust Tracking Control: The Error-Space Approach
551(12)
7.10.3 Model-Following Design
563(4)
7.10.4 The Extended Estimator
567(3)
7.11 Loop Transfer Recovery
570(6)
7.12 Direct Design with Rational Transfer Functions
576(4)
7.13 Design for Systems with Pure Time Delay
580(3)
7.14 Solution of State Equations (W)
583(2)
7.15 Historical Perspective
585(1)
Summary
586(3)
Review Questions
589(1)
Problems
590(24)
8 Digital Control 614(47)
A Perspective on Digital Control
614(1)
Chapter Overview
614(1)
8.1 Digitization
615(3)
8.2 Dynamic Analysis of Discrete Systems
618(7)
8.2.1 z-Transform
618(1)
8.2.2 z-Transform Inversion
619(2)
8.2.3 Relationship Between s and z
621(2)
8.2.4 Final Value Theorem
623(2)
8.3 Design Using Discrete Equivalents
625(12)
8.3.1 Tustin's Method
625(4)
8.3.2 Zero-Order Hold (ZOH) Method
629(2)
8.3.3 Matched Pole-Zero (MPZ) Method
631(4)
8.3.4 Modified Matched Pole-Zero (MMPZ) Method
635(1)
8.3.5 Comparison of Digital Approximation Methods
636(1)
8.3.6 Applicability Limits of the Discrete Equivalent Design Method
637(1)
8.4 Hardware Characteristics
637(4)
8.4.1 Analog-to-Digital (A/D) Converters
638(1)
8.4.2 Digital-to-Analog Converters
638(1)
8.4.3 Anti-Alias Prefilters
639(1)
8.4.4 The Computer
640(1)
8.5 Sample-Rate Selection
641(3)
8.5.1 Tracking Effectiveness
642(1)
8.5.2 Disturbance Rejection
643(1)
8.5.3 Effect of Anti-Alias Prefilter
643(1)
8.5.4 Asynchronous Sampling
644(1)
8.6 Discrete Design
644(8)
8.6.1 Analysis Tools
645(1)
8.6.2 Feedback Properties
646(2)
8.6.3 Discrete Design Example
648(2)
8.6.4 Discrete Analysis of Designs
650(2)
8.7 Discrete State-Space Design Methods (W)
652(1)
8.8 Historical Perspective
652(1)
Summary
653(2)
Review Questions
655(1)
Problems
655(6)
9 Nonlinear Systems 661(68)
A Perspective on Nonlinear Systems
661(1)
Chapter Overview
662(1)
9.1 Introduction and Motivation: Why Study Nonlinear Systems?
663(2)
9.2 Analysis by Linearization
665(7)
9.2.1 Linearization by Small-Signal Analysis
665(5)
9.2.2 Linearization by Nonlinear Feedback
670(1)
9.2.3 Linearization by Inverse Nonlinearity
671(1)
9.3 Equivalent Gain Analysis Using the Root Locus
672(12)
9.3.1 Integrator Antiwindup
679(5)
9.4 Equivalent Gain Analysis Using Frequency Response: Describing Functions
684(10)
9.4.1 Stability Analysis Using Describing Functions
690(4)
9.5 Analysis and Design Based on Stability
694(21)
9.5.1 The Phase Plane
695(6)
9.5.2 Lyapunov Stability Analysis
701(8)
9.5.3 The Circle Criterion
709(6)
9.6 Historical Perspective
715(1)
Summary
716(1)
Review Questions
717(1)
Problems
717(12)
10 Control System Design: Principles and Case Studies 729(114)
A Perspective on Design Principles
729(1)
Chapter Overview
729(2)
10.1 An Outline of Control Systems Design
731(6)
10.2 Design of a Satellite's Attitude Control
737(18)
10.3 Lateral and Longitudinal Control of a Boeing 747
755(18)
10.3.1 Yaw Damper
760(7)
10.3.2 Altitude-Hold Autopilot
767(6)
10.4 Control of the Fuel-Air Ratio in an Automotive Engine
773(8)
10.5 Control of a Quadrotor Drone
781(16)
10.6 Control of RTP Systems in Semiconductor Wafer Manufacturing
797(14)
10.7 Chemotaxis, or How E. Coli Swims Away from Trouble
811(10)
10.8 Historical Perspective
821(2)
Summary
823(2)
Review Questions
825(1)
Problems
825(18)
Appendix A Laplace Transforms 843(15)
A.1 The L- Laplace Transform
843(15)
A.1.1 Properties of Laplace Transforms
844(8)
A.1.2 Inverse Laplace Transform by Partial-Fraction Expansion
852(3)
A.1.3 The Initial Value Theorem
855(1)
A.1.4 Final Value Theorem
856(2)
Appendix B solutions to the Review Questions 858(17)
Appendix C Matlab Commands 875(6)
Bibliography 881(9)
Index 890