Preface |
|
xiii | |
1 An Overview and Brief History of Feedback Control |
|
1 | (23) |
|
A Perspective on Feedback Control |
|
|
1 | (1) |
|
|
2 | (1) |
|
1.1 A Simple Feedback System |
|
|
3 | (3) |
|
1.2 A First Analysis of Feedback |
|
|
6 | (4) |
|
1.3 Feedback System Fundamentals |
|
|
10 | (1) |
|
|
11 | (7) |
|
1.5 An Overview of the Book |
|
|
18 | (1) |
|
|
19 | (1) |
|
|
20 | (1) |
|
|
20 | (4) |
2 Dynamic Models |
|
24 | (65) |
|
A Perspective on Dynamic Models |
|
|
24 | (1) |
|
|
25 | (1) |
|
2.1 Dynamics of Mechanical Systems |
|
|
25 | (24) |
|
2.1.1 Translational Motion |
|
|
25 | (7) |
|
|
32 | (11) |
|
2.1.3 Combined Rotation and Translation |
|
|
43 | (3) |
|
2.1.4 Complex Mechanical Systems (W)** |
|
|
46 | (1) |
|
2.1.5 Distributed Parameter Systems |
|
|
46 | (2) |
|
2.1.6 Summary: Developing Equations of Motion for Rigid Bodies |
|
|
48 | (1) |
|
2.2 Models of Electric Circuits |
|
|
49 | (5) |
|
2.3 Models of Electromechanical Systems |
|
|
54 | (7) |
|
|
54 | (2) |
|
|
56 | (4) |
|
|
60 | (1) |
|
2.4 Heat and Fluid-Flow Models |
|
|
61 | (12) |
|
|
62 | (4) |
|
2.4.2 Incompressible Fluid Flow |
|
|
66 | (7) |
|
2.5 Historical Perspective |
|
|
73 | (3) |
|
|
76 | (1) |
|
|
76 | (1) |
|
|
77 | (12) |
3 Dynamic Response |
|
89 | (97) |
|
A Perspective on System Response |
|
|
89 | (1) |
|
|
90 | (1) |
|
3.1 Review of Laplace Transforms |
|
|
90 | (33) |
|
3.1.1 Response by Convolution |
|
|
91 | (5) |
|
3.1.2 Transfer Functions and Frequency Response |
|
|
96 | (10) |
|
3.1.3 The L_ Laplace Transform |
|
|
106 | (2) |
|
3.1.4 Properties of Laplace Transforms |
|
|
108 | (2) |
|
3.1.5 Inverse Laplace Transform by Partial-Fraction Expansion |
|
|
110 | (2) |
|
3.1.6 The Final Value Theorem |
|
|
112 | (2) |
|
3.1.7 Using Laplace Transforms to Solve Differential Equations |
|
|
114 | (2) |
|
|
116 | (1) |
|
3.1.9 Linear System Analysis Using Matlab |
|
|
117 | (6) |
|
3.2 System Modeling Diagrams |
|
|
123 | (5) |
|
|
123 | (4) |
|
3.2.2 Block-Diagram Reduction Using Matlab |
|
|
127 | (1) |
|
3.2.3 Mason's Rule and the Signal Flow Graph (W) |
|
|
128 | (1) |
|
3.3 Effect of Pole Locations |
|
|
128 | (9) |
|
3.4 Time-Domain Specifications |
|
|
137 | (5) |
|
|
137 | (1) |
|
3.4.2 Overshoot and Peak Time |
|
|
138 | (1) |
|
|
139 | (3) |
|
3.5 Effects of Zeros and Additional Poles |
|
|
142 | (10) |
|
|
152 | (10) |
|
3.6.1 Bounded Input-Bounded Output Stability |
|
|
152 | (2) |
|
3.6.2 Stability of LTI Systems |
|
|
154 | (1) |
|
3.6.3 Routh's Stability Criterion |
|
|
155 | (7) |
|
3.7 Obtaining Models from Experimental Data: System Identification (W) |
|
|
162 | (1) |
|
3.8 Amplitude and Time Scaling (W) |
|
|
162 | (1) |
|
3.9 Historical Perspective |
|
|
162 | (1) |
|
|
163 | (2) |
|
|
165 | (1) |
|
|
165 | (21) |
4 A First Analysis of Feedback |
|
186 | (62) |
|
A Perspective on the Analysis of Feedback |
|
|
186 | (1) |
|
|
187 | (1) |
|
4.1 The Basic Equations of Control |
|
|
188 | (6) |
|
|
189 | (1) |
|
|
190 | (1) |
|
|
191 | (1) |
|
|
192 | (2) |
|
4.2 Control of Steady-State Error to Polynomial Inputs: System Type |
|
|
194 | (8) |
|
4.2.1 System Type for Tracking |
|
|
195 | (5) |
|
4.2.2 System Type for Regulation and Disturbance Rejection |
|
|
200 | (2) |
|
4.3 The Three-Term Controller: PID Control |
|
|
202 | (20) |
|
4.3.1 Proportional Control (P) |
|
|
202 | (2) |
|
4.3.2 Integral Control (I) |
|
|
204 | (3) |
|
4.3.3 Derivative Control (D) |
|
|
207 | (1) |
|
4.3.4 Proportional Plus Integral Control (PI) |
|
|
207 | (4) |
|
|
211 | (5) |
|
4.3.6 Ziegler-Nichols Tuning of the PID Controller |
|
|
216 | (6) |
|
4.4 Feedforward Control by Plant Model Inversion |
|
|
222 | (2) |
|
4.5 Introduction to Digital Control (W) |
|
|
224 | (1) |
|
4.6 Sensitivity of Time Response to Parameter Change (W) |
|
|
225 | (1) |
|
4.7 Historical Perspective |
|
|
225 | (2) |
|
|
227 | (1) |
|
|
228 | (1) |
|
|
229 | (19) |
5 The Root-Locus Design Method |
|
248 | (83) |
|
A Perspective on the Root-Locus Design Method |
|
|
248 | (1) |
|
|
249 | (1) |
|
5.1 Root Locus of a Basic Feedback System |
|
|
249 | (5) |
|
5.2 Guidelines for Determining a Root Locus |
|
|
254 | (12) |
|
5.2.1 Rules for Determining a Positive (180°) Root Locus |
|
|
256 | (6) |
|
5.2.2 Summary of the Rules for Determining a Root Locus |
|
|
262 | (1) |
|
5.2.3 Selecting the Parameter Value |
|
|
263 | (3) |
|
5.3 Selected Illustrative Root Loci |
|
|
266 | (13) |
|
5.4 Design Using Dynamic Compensation |
|
|
279 | (11) |
|
5.4.1 Design Using Lead Compensation |
|
|
280 | (5) |
|
5.4.2 Design Using Lag Compensation |
|
|
285 | (3) |
|
5.4.3 Design Using Notch Compensation |
|
|
288 | (2) |
|
5.4.4 Analog and Digital Implementations (W) |
|
|
290 | (1) |
|
5.5 Design Examples Using the Root Locus |
|
|
290 | (11) |
|
5.6 Extensions of the Root-Locus Method |
|
|
301 | (8) |
|
5.6.1 Rules for Plotting a Negative (0°) Root Locus |
|
|
301 | (3) |
|
5.6.2 Successive Loop Closure |
|
|
304 | (5) |
|
|
309 | (1) |
|
5.7 Historical Perspective |
|
|
309 | (2) |
|
|
311 | (2) |
|
|
313 | (1) |
|
|
313 | (18) |
6 The Frequency-Response Design Method |
|
331 | (126) |
|
A Perspective on the Frequency-Response Design Method |
|
|
331 | (1) |
|
|
332 | (1) |
|
|
332 | (22) |
|
6.1.1 Bode Plot Techniques |
|
|
340 | (12) |
|
6.1.2 Steady-State Errors |
|
|
352 | (2) |
|
|
354 | (3) |
|
6.3 The Nyquist Stability Criterion |
|
|
357 | (14) |
|
6.3.1 The Argument Principle |
|
|
357 | (1) |
|
6.3.2 Application of The Argument Principle to Control Design |
|
|
358 | (13) |
|
|
371 | (9) |
|
6.5 Bode's Gain-Phase Relationship |
|
|
380 | (5) |
|
6.6 Closed-Loop Frequency Response |
|
|
385 | (1) |
|
|
386 | (35) |
|
|
387 | (1) |
|
6.7.2 Lead Compensation (W) |
|
|
388 | (10) |
|
|
398 | (1) |
|
|
398 | (6) |
|
|
404 | (7) |
|
6.7.6 Design Considerations |
|
|
411 | (2) |
|
6.7.7 Specifications in Terms of the Sensitivity Function |
|
|
413 | (5) |
|
6.7.8 Limitations on Design in Terms of the Sensitivity Function |
|
|
418 | (3) |
|
|
421 | (2) |
|
6.8.1 Time Delay via the Nyquist Diagram (W) |
|
|
423 | (1) |
|
6.9 Alternative Presentation of Data |
|
|
423 | (5) |
|
|
423 | (5) |
|
6.9.2 The Inverse Nyquist Diagram (W) |
|
|
428 | (1) |
|
6.10 Historical Perspective |
|
|
428 | (1) |
|
|
429 | (2) |
|
|
431 | (1) |
|
|
432 | (25) |
7 State-Space Design |
|
457 | (157) |
|
A Perspective on State-Space Design |
|
|
457 | (1) |
|
|
458 | (1) |
|
7.1 Advantages of State-Space |
|
|
458 | (2) |
|
7.2 System Description in State-Space |
|
|
460 | (6) |
|
7.3 Block Diagrams and State-Space |
|
|
466 | (3) |
|
7.4 Analysis of the State Equations |
|
|
469 | (17) |
|
7.4.1 Block Diagrams and Canonical Forms |
|
|
469 | (12) |
|
7.4.2 Dynamic Response from the State Equations |
|
|
481 | (5) |
|
7.5 Control-Law Design for Full-State Feedback |
|
|
486 | (14) |
|
7.5.1 Finding the Control Law |
|
|
487 | (9) |
|
7.5.2 Introducing the Reference Input with Full-State Feedback |
|
|
496 | (4) |
|
7.6 Selection of Pole Locations for Good Design |
|
|
500 | (12) |
|
7.6.1 Dominant Second-Order Poles |
|
|
500 | (2) |
|
7.6.2 Symmetric Root Locus (SRL) |
|
|
502 | (9) |
|
7.6.3 Comments on the Methods |
|
|
511 | (1) |
|
|
512 | (13) |
|
7.7.1 Full-Order Estimators |
|
|
512 | (6) |
|
7.7.2 Reduced-Order Estimators |
|
|
518 | (4) |
|
7.7.3 Estimator Pole Selection |
|
|
522 | (3) |
|
7.8 Compensator Design: Combined Control Law and Estimator (W) |
|
|
525 | (12) |
|
7.9 Introduction of the Reference Input with the Estimator (W) |
|
|
537 | (12) |
|
7.9.1 General Structure for the Reference Input |
|
|
539 | (9) |
|
|
548 | (1) |
|
7.10 Integral Control and Robust Tracking |
|
|
549 | (21) |
|
|
549 | (2) |
|
7.10.2 Robust Tracking Control: The Error-Space Approach |
|
|
551 | (12) |
|
7.10.3 Model-Following Design |
|
|
563 | (4) |
|
7.10.4 The Extended Estimator |
|
|
567 | (3) |
|
7.11 Loop Transfer Recovery |
|
|
570 | (6) |
|
7.12 Direct Design with Rational Transfer Functions |
|
|
576 | (4) |
|
7.13 Design for Systems with Pure Time Delay |
|
|
580 | (3) |
|
7.14 Solution of State Equations (W) |
|
|
583 | (2) |
|
7.15 Historical Perspective |
|
|
585 | (1) |
|
|
586 | (3) |
|
|
589 | (1) |
|
|
590 | (24) |
8 Digital Control |
|
614 | (47) |
|
A Perspective on Digital Control |
|
|
614 | (1) |
|
|
614 | (1) |
|
|
615 | (3) |
|
8.2 Dynamic Analysis of Discrete Systems |
|
|
618 | (7) |
|
|
618 | (1) |
|
8.2.2 z-Transform Inversion |
|
|
619 | (2) |
|
8.2.3 Relationship Between s and z |
|
|
621 | (2) |
|
8.2.4 Final Value Theorem |
|
|
623 | (2) |
|
8.3 Design Using Discrete Equivalents |
|
|
625 | (12) |
|
|
625 | (4) |
|
8.3.2 Zero-Order Hold (ZOH) Method |
|
|
629 | (2) |
|
8.3.3 Matched Pole-Zero (MPZ) Method |
|
|
631 | (4) |
|
8.3.4 Modified Matched Pole-Zero (MMPZ) Method |
|
|
635 | (1) |
|
8.3.5 Comparison of Digital Approximation Methods |
|
|
636 | (1) |
|
8.3.6 Applicability Limits of the Discrete Equivalent Design Method |
|
|
637 | (1) |
|
8.4 Hardware Characteristics |
|
|
637 | (4) |
|
8.4.1 Analog-to-Digital (A/D) Converters |
|
|
638 | (1) |
|
8.4.2 Digital-to-Analog Converters |
|
|
638 | (1) |
|
8.4.3 Anti-Alias Prefilters |
|
|
639 | (1) |
|
|
640 | (1) |
|
8.5 Sample-Rate Selection |
|
|
641 | (3) |
|
8.5.1 Tracking Effectiveness |
|
|
642 | (1) |
|
8.5.2 Disturbance Rejection |
|
|
643 | (1) |
|
8.5.3 Effect of Anti-Alias Prefilter |
|
|
643 | (1) |
|
8.5.4 Asynchronous Sampling |
|
|
644 | (1) |
|
|
644 | (8) |
|
|
645 | (1) |
|
8.6.2 Feedback Properties |
|
|
646 | (2) |
|
8.6.3 Discrete Design Example |
|
|
648 | (2) |
|
8.6.4 Discrete Analysis of Designs |
|
|
650 | (2) |
|
8.7 Discrete State-Space Design Methods (W) |
|
|
652 | (1) |
|
8.8 Historical Perspective |
|
|
652 | (1) |
|
|
653 | (2) |
|
|
655 | (1) |
|
|
655 | (6) |
9 Nonlinear Systems |
|
661 | (68) |
|
A Perspective on Nonlinear Systems |
|
|
661 | (1) |
|
|
662 | (1) |
|
9.1 Introduction and Motivation: Why Study Nonlinear Systems? |
|
|
663 | (2) |
|
9.2 Analysis by Linearization |
|
|
665 | (7) |
|
9.2.1 Linearization by Small-Signal Analysis |
|
|
665 | (5) |
|
9.2.2 Linearization by Nonlinear Feedback |
|
|
670 | (1) |
|
9.2.3 Linearization by Inverse Nonlinearity |
|
|
671 | (1) |
|
9.3 Equivalent Gain Analysis Using the Root Locus |
|
|
672 | (12) |
|
9.3.1 Integrator Antiwindup |
|
|
679 | (5) |
|
9.4 Equivalent Gain Analysis Using Frequency Response: Describing Functions |
|
|
684 | (10) |
|
9.4.1 Stability Analysis Using Describing Functions |
|
|
690 | (4) |
|
9.5 Analysis and Design Based on Stability |
|
|
694 | (21) |
|
|
695 | (6) |
|
9.5.2 Lyapunov Stability Analysis |
|
|
701 | (8) |
|
9.5.3 The Circle Criterion |
|
|
709 | (6) |
|
9.6 Historical Perspective |
|
|
715 | (1) |
|
|
716 | (1) |
|
|
717 | (1) |
|
|
717 | (12) |
10 Control System Design: Principles and Case Studies |
|
729 | (114) |
|
A Perspective on Design Principles |
|
|
729 | (1) |
|
|
729 | (2) |
|
10.1 An Outline of Control Systems Design |
|
|
731 | (6) |
|
10.2 Design of a Satellite's Attitude Control |
|
|
737 | (18) |
|
10.3 Lateral and Longitudinal Control of a Boeing 747 |
|
|
755 | (18) |
|
|
760 | (7) |
|
10.3.2 Altitude-Hold Autopilot |
|
|
767 | (6) |
|
10.4 Control of the Fuel-Air Ratio in an Automotive Engine |
|
|
773 | (8) |
|
10.5 Control of a Quadrotor Drone |
|
|
781 | (16) |
|
10.6 Control of RTP Systems in Semiconductor Wafer Manufacturing |
|
|
797 | (14) |
|
10.7 Chemotaxis, or How E. Coli Swims Away from Trouble |
|
|
811 | (10) |
|
10.8 Historical Perspective |
|
|
821 | (2) |
|
|
823 | (2) |
|
|
825 | (1) |
|
|
825 | (18) |
Appendix A Laplace Transforms |
|
843 | (15) |
|
A.1 The L- Laplace Transform |
|
|
843 | (15) |
|
A.1.1 Properties of Laplace Transforms |
|
|
844 | (8) |
|
A.1.2 Inverse Laplace Transform by Partial-Fraction Expansion |
|
|
852 | (3) |
|
A.1.3 The Initial Value Theorem |
|
|
855 | (1) |
|
A.1.4 Final Value Theorem |
|
|
856 | (2) |
Appendix B solutions to the Review Questions |
|
858 | (17) |
Appendix C Matlab Commands |
|
875 | (6) |
Bibliography |
|
881 | (9) |
Index |
|
890 | |