Muutke küpsiste eelistusi

Force Control Theory and Method of Human Load Carrying Exoskeleton Suit 1st ed. 2017 [Kõva köide]

  • Formaat: Hardback, 218 pages, kõrgus x laius: 235x155 mm, kaal: 4794 g, 137 Illustrations, color; 22 Illustrations, black and white; XV, 218 p. 159 illus., 137 illus. in color., 1 Hardback
  • Ilmumisaeg: 21-Apr-2017
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3662541424
  • ISBN-13: 9783662541425
  • Kõva köide
  • Hind: 141,35 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 166,29 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Hardback, 218 pages, kõrgus x laius: 235x155 mm, kaal: 4794 g, 137 Illustrations, color; 22 Illustrations, black and white; XV, 218 p. 159 illus., 137 illus. in color., 1 Hardback
  • Ilmumisaeg: 21-Apr-2017
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3662541424
  • ISBN-13: 9783662541425
This book reports on the latest advances in concepts and further development of principal component analysis (PCA), discussing in detail a number of open problems related to dimensional reduction techniques and their extensions. It brings together research findings, previously scattered throughout many scientific journal papers worldwide, and presents them in a methodologically unified form. Offering vital insights into the subject matter in self-contained chapters that balance the theory and concrete applications, and focusing on open problems, it is essential reading for all researchers and practitioners with an interest in PCA

Introduction.- Model of Exoskeleton Suit.- Sensitivity Amplification Control of Exoskeleton Suit.- Direct Force Control of Exoskeleton Suit.- Force Control of Exoskeleton Suit Based on Inner Position Loop.- Impedance Control of Exoskeleton Suit.- Impedance Control of Exoskeleton Suit with Uncertainties.- Exoskeleton Suit"s Reference Trajectory Estimated Method Based on Neural Network.- Conclusions.
1 Introduction
1(44)
1.1 Background
1(3)
1.2 Development Status of Exoskeleton Suit
4(25)
1.2.1 Abroad Development of Exoskeleton Suit
4(21)
1.2.2 Domestic Development Status of Exoskeleton Suit
25(4)
1.3 The State of the Art of the Research in Exoskeleton Suit Control Methods
29(7)
1.3.1 Operator Control
30(2)
1.3.2 Preprogrammed Control
32(1)
1.3.3 Myoelectricity Control
33(1)
1.3.4 Master-Slave Control
33(1)
1.3.5 Force Feedback Control
34(1)
1.3.6 Ground Reaction Force Control
35(1)
1.3.7 ZMP Control
35(1)
1.3.8 Sensitivity Amplification Control
36(1)
1.4 Major Contents of the Book
36(9)
References
38(7)
2 Model of Exoskeleton Suit
45(28)
2.1 Introduction
45(1)
2.2 Basic Description of Exoskeleton Suit
46(7)
2.2.1 Mechanical Model of Exoskeleton Suit
46(2)
2.2.2 Segment Properties of Exoskeleton Suit
48(1)
2.2.3 Definition of Coordinate System
49(2)
2.2.4 Partition of the Model
51(2)
2.3 Kinematics Model of Exoskeleton Suit
53(8)
2.3.1 Position and Orientation Description of Rigid Body
53(2)
2.3.2 Kinematics Model
55(6)
2.4 Dynamics of Exoskeleton Suit
61(7)
2.4.1 The Method of Dynamics Modeling
61(1)
2.4.2 Modeling Procedures
62(3)
2.4.3 Dynamics Model
65(2)
2.4.4 Properties of the Model
67(1)
2.5 Human-Machine Interaction Model
68(5)
References
71(2)
3 Sensitivity Amplification Control of Exoskeleton Suit
73(30)
3.1 Introduction
73(1)
3.2 Sensitivity Amplification Control
74(13)
3.2.1 1-DOF Exoskeleton Suit Without Actuation
75(1)
3.2.2 1-DOF Exoskeleton Suit with Actuation
76(2)
3.2.3 Sensitivity Amplification Control of Nonlinear System
78(2)
3.2.4 Stability Analysis
80(1)
3.2.5 Simulation Analysis
81(6)
3.3 Sensitivity Amplification Control Based on Neural Network
87(16)
3.3.1 Stability Analysis
88(4)
3.3.2 Model Identification Using Neural Networks
92(6)
3.3.3 Simulation Analysis
98(3)
References
101(2)
4 Direct Force Control of Exoskeleton Suit
103(28)
4.1 Introduction
103(3)
4.2 Direct Force Control of Exoskeleton Suit
106(1)
4.3 Stability Analysis
107(6)
4.3.1 Spring Model
108(1)
4.3.2 Spring Damping Model
109(2)
4.3.3 Impedance Model
111(2)
4.4 Simulation
113(18)
4.4.1 Human-Machine Interaction Model Parameter's Influence to Force
119(3)
4.4.2 Load Varying's Influence to Force
122(4)
4.4.3 Load Varying's Influence to Force Under PI Control
126(3)
References
129(2)
5 Force Control of Exoskeleton Suit Based on Inner Position Loop
131(28)
5.1 Introduction
131(1)
5.2 Inner Position Loop
132(3)
5.2.1 Inner Position Loop Based on the Static Model
133(1)
5.2.2 Inner Position Loop Based on the Dynamic Model
134(1)
5.3 Force Control Based on the Inner Position Loop
135(3)
5.4 Simulation
138(21)
5.4.1 Simulation of Inner Position Loop
138(6)
5.4.2 Simulation of Force Control Based on the Inner Position Loop
144(14)
References
158(1)
6 Impedance Control of Exoskeleton Suit
159(20)
6.1 Introduction
159(1)
6.2 Impedance Control of Exoskeleton Suit
160(2)
6.3 Impedance Control Based on Tracking Differentiator
162(2)
6.4 Simulation
164(15)
6.4.1 Simulation of Impedance Control
165(9)
6.4.2 Simulation of Impedance Control Based on Tracking Differentiator
174(4)
References
178(1)
7 Impedance Control of Exoskeleton Suit with Uncertainties
179(14)
7.1 Introduction
179(1)
7.2 Estimation of Neural Networks with Uncertainties
180(2)
7.3 Stability Analysis
182(2)
7.4 Simulation
184(9)
References
192(1)
8 Exoskeleton Suit's Reference Trajectory Estimated Method Based on Neural Network
193(14)
8.1 Introduction
193(1)
8.2 Reference Trajectory Estimated Method Based on Neural Network
193(2)
8.3 Simulation
195(12)
8.3.1 Simulation Without Control
197(1)
8.3.2 Simulation with Control
198(7)
References
205(2)
9 Conclusions
207(6)
9.1 Conclusions of Major Contents
207(2)
9.2 Comparing and Analysis of the Control Method
209(1)
9.3 Outlook
210(3)
Appendix A Calculate Method of Human Attribute 213(2)
Appendix B Clinical Gait Analysis Data 215(2)
References 217