Preface |
|
xxv | |
1 Characteristics of the Fusion Reactor |
|
1 | (16) |
|
1.1 The Fusion Reactor as an Energy Source |
|
|
1 | (2) |
|
1.1.1 Trends in World Energy Consumption |
|
|
1 | (1) |
|
1.1.2 Energy Classification |
|
|
1 | (1) |
|
1.1.3 Nuclear Fusion Power Generation |
|
|
2 | (1) |
|
1.2 Nuclear Fusion Reaction |
|
|
3 | (4) |
|
1.2.1 Nuclear Reaction Used in the Fusion Reactor |
|
|
3 | (1) |
|
1.2.2 Cross Section of the Fusion Reaction |
|
|
4 | (1) |
|
1.2.3 Fusion Reaction Rate |
|
|
5 | (2) |
|
1.3 Plasma Confinement Concept |
|
|
7 | (8) |
|
1.3.1 Magnetic Confinement |
|
|
7 | (6) |
|
1.3.1.1 Linear System (Open-End System) |
|
|
7 | (2) |
|
|
9 | (4) |
|
1.3.2 Inertial Confinement |
|
|
13 | (2) |
|
|
15 | (2) |
2 Basis of the Fusion Reactor |
|
17 | (14) |
|
|
17 | (2) |
|
2.2 Fusion Reactor Structure |
|
|
19 | (1) |
|
2.3 Power Generation Conditions of the Fusion Reactor |
|
|
20 | (2) |
|
2.3.1 Power Flow of the Power Plant |
|
|
20 | (1) |
|
|
21 | (1) |
|
2.3.3 Fuel Supply Scenario |
|
|
22 | (1) |
|
2.4 Core Plasma Conditions |
|
|
22 | (2) |
|
2.4.1 Break-Even Condition and Self-Ignition Condition |
|
|
22 | (1) |
|
|
22 | (2) |
|
2.4.3 Typical Reactor Concepts |
|
|
24 | (1) |
|
2.5 Requirements of Plasma in the Fusion Reactor |
|
|
24 | (2) |
|
2.5.1 Fusion Triple Product |
|
|
25 | (1) |
|
|
25 | (1) |
|
2.5.3 Current Drive Efficiency |
|
|
25 | (1) |
|
|
26 | (2) |
|
|
26 | (1) |
|
2.6.2 Quasi-steady-state Operation |
|
|
27 | (1) |
|
2.6.3 Steady-state Operation |
|
|
28 | (1) |
|
2.7 Stepwise Development Research of the Fusion Reactor |
|
|
28 | (1) |
|
2.7.1 Experimental Reactor |
|
|
29 | (1) |
|
|
29 | (1) |
|
2.7.3 Demonstration Reactor/Commercial Reactor |
|
|
29 | (1) |
|
|
29 | (2) |
3 Basics of Plasma Analysis |
|
31 | (26) |
|
|
31 | (1) |
|
|
32 | (3) |
|
3.2.1 Velocity Information |
|
|
33 | (1) |
|
|
33 | (1) |
|
3.2.3 External Electromagnetic Field |
|
|
33 | (1) |
|
3.2.4 Numerical Simulation |
|
|
33 | (1) |
|
3.2.5 Main Plasma Theories |
|
|
33 | (2) |
|
3.3 Magnetohydrodynamic Equation |
|
|
35 | (4) |
|
3.3.1 Macroscopic Physical Quantity |
|
|
35 | (2) |
|
3.3.1.1 Momentum Flow Tensor P(r, t) |
|
|
36 | (1) |
|
3.3.1.2 Pressure Tensor p(r, t) |
|
|
36 | (1) |
|
3.3.1.3 Energy Density epsilon(r, t) |
|
|
36 | (1) |
|
3.3.1.4 Internal Energy Density U(r, t) |
|
|
36 | (1) |
|
3.3.1.5 Energy Flux Vector Q(r, t) |
|
|
36 | (1) |
|
3.3.2 Particle Number Conservation Law (Equation of Continuity) |
|
|
37 | (1) |
|
3.3.3 Momentum Conservation Law |
|
|
38 | (1) |
|
3.3.4 Energy Conservation Law |
|
|
39 | (1) |
|
|
39 | (2) |
|
3.5 Linearized Kinetic Analysis (One Dimension) |
|
|
41 | (2) |
|
3.6 Linearized Kinetic Analysis (Three Dimensions) |
|
|
43 | (3) |
|
|
46 | (3) |
|
|
49 | (4) |
|
3.8.1 Weak Turbulence Theory |
|
|
49 | (4) |
|
3.8.1.1 Wave-Particle Interaction |
|
|
51 | (1) |
|
3.8.1.2 Wave-Wave (3 Waves) Interaction |
|
|
52 | (1) |
|
3.8.1.3 Nonlinear Wave-Particle Interaction |
|
|
52 | (1) |
|
3.8.1.4 Wave-Wave (4 Waves) Interaction |
|
|
52 | (1) |
|
3.8.2 Strong Turbulence Theory |
|
|
53 | (1) |
|
3.9 Neutron Transport Analysis |
|
|
53 | (2) |
|
|
53 | (1) |
|
3.9.2 Interaction Between Neutrons and Materials |
|
|
54 | (1) |
|
|
55 | (2) |
4 Plasma Equilibrium and Stability |
|
57 | (56) |
|
|
57 | (7) |
|
|
57 | (2) |
|
4.1.2 Equilibrium Equation |
|
|
59 | (2) |
|
4.1.3 Tokamak Equilibrium |
|
|
61 | (2) |
|
4.1.4 Plasma Cross Section |
|
|
63 | (1) |
|
|
64 | (7) |
|
|
64 | (4) |
|
|
64 | (2) |
|
4.2.1.2 Linearized Ideal MHD Equation |
|
|
66 | (1) |
|
|
67 | (1) |
|
|
68 | (1) |
|
|
69 | (1) |
|
4.2.4 MHD Mode and Resonant Surface |
|
|
69 | (2) |
|
4.3 Plasma Positional Instability |
|
|
71 | (3) |
|
|
74 | (3) |
|
|
74 | (1) |
|
4.4.2 Dispersion Relation |
|
|
74 | (2) |
|
4.4.3 Stabilization Method |
|
|
76 | (1) |
|
4.5 Interchange Instability |
|
|
77 | (1) |
|
4.6 Ballooning Instability |
|
|
78 | (4) |
|
|
78 | (1) |
|
|
79 | (2) |
|
4.6.3 Stabilization Method |
|
|
81 | (1) |
|
4.7 Resistive Instability |
|
|
82 | (8) |
|
|
83 | (5) |
|
|
83 | (1) |
|
|
84 | (1) |
|
4.7.1.3 Magnetic Island Width |
|
|
85 | (1) |
|
4.7.1.4 Magnetic Island Evolution Equation |
|
|
86 | (2) |
|
4.7.1.5 Stabilization Method |
|
|
88 | (1) |
|
4.7.2 Neoclassical Tearing Mode |
|
|
88 | (2) |
|
|
88 | (1) |
|
4.7.2.2 Difference in the Logarithmic Derivative Due to Bootstrap Current |
|
|
89 | (1) |
|
4.7.2.3 Magnetic Island Evolution Equation |
|
|
89 | (1) |
|
4.7.2.4 Stabilization Method |
|
|
89 | (1) |
|
|
90 | (6) |
|
|
90 | (1) |
|
4.8.2 Density Gradient and Temperature Gradient |
|
|
90 | (2) |
|
4.8.3 Resistive Drift Mode |
|
|
92 | (3) |
|
4.8.4 Influence of Drift Wave on Plasma Transport |
|
|
95 | (1) |
|
4.9 Resistive Wall Instability |
|
|
96 | (2) |
|
|
96 | (1) |
|
4.9.2 Stabilization Method |
|
|
97 | (1) |
|
4.10 Instability Due to High Energy Particles |
|
|
98 | (4) |
|
|
98 | (4) |
|
|
98 | (1) |
|
4.10.1.2 Dispersion Relation |
|
|
99 | (1) |
|
4.10.1.3 Instability Condition and Stabilization Method |
|
|
100 | (2) |
|
4.10.2 Fishbone Oscillation |
|
|
102 | (1) |
|
4.11 Sawtooth Oscillation |
|
|
102 | (1) |
|
|
102 | (1) |
|
|
103 | (1) |
|
|
103 | (1) |
|
|
103 | (4) |
|
|
107 | (4) |
|
|
111 | (2) |
5 Plasma Transport and Confinement |
|
113 | (28) |
|
|
113 | (1) |
|
|
114 | (5) |
|
5.2.1 Diffusion by Collision |
|
|
114 | (2) |
|
5.2.2 Diffusion by Turbulence |
|
|
116 | (3) |
|
|
116 | (2) |
|
5.2.2.2 Gyro-Bohm Diffusion |
|
|
118 | (1) |
|
5.2.2.3 Energy Confinement |
|
|
119 | (1) |
|
5.3 Scaling Law of Energy Confinement |
|
|
119 | (5) |
|
5.3.1 Parameter Dependence of Energy Confinement Time |
|
|
119 | (1) |
|
|
120 | (2) |
|
5.3.3 L-H Transition Threshold Power |
|
|
122 | (1) |
|
5.3.4 Improved Confinement Mode |
|
|
122 | (2) |
|
|
124 | (3) |
|
5.4.1 Types of Edge Localized Mode |
|
|
124 | (1) |
|
5.4.2 Energy Released by ELM |
|
|
125 | (2) |
|
5.4.3 Measures Against ELM |
|
|
127 | (1) |
|
|
127 | (2) |
|
5.5.1 Plasma Current Profile |
|
|
128 | (1) |
|
5.5.2 Plasma Pressure Profile |
|
|
128 | (1) |
|
5.5.3 Shape of Plasma Cross Section |
|
|
129 | (1) |
|
5.5.4 Neoclassical Tearing Mode |
|
|
129 | (1) |
|
|
129 | (1) |
|
5.7 Confinement of High-Energy Particles |
|
|
129 | (1) |
|
|
130 | (7) |
|
5.8.1 Plasma Behavior in Disruption and Cause of the Occurrence |
|
|
131 | (2) |
|
|
131 | (2) |
|
5.8.1.2 Causes of Disruption |
|
|
133 | (1) |
|
5.8.2 Effect on Equipment |
|
|
133 | (2) |
|
|
133 | (1) |
|
5.8.2.2 Electromagnetic Force |
|
|
134 | (1) |
|
5.8.3 Countermeasures Against Disruption |
|
|
135 | (2) |
|
|
137 | (1) |
|
|
137 | (4) |
6 Plasma Design |
|
141 | (16) |
|
6.1 Particle and Energy Balances of Plasma (One Dimension) |
|
|
141 | (4) |
|
6.1.1 Thermal Conduction Loss Power |
|
|
143 | (1) |
|
6.1.2 Convection Loss Power |
|
|
143 | (1) |
|
|
143 | (1) |
|
6.1.4 Additional Heating Power |
|
|
144 | (1) |
|
6.1.5 Joule (Ohmic) Heating Power |
|
|
144 | (1) |
|
6.1.6 Electron-Ion Energy Transfer |
|
|
144 | (1) |
|
6.1.7 Radiation Loss Power |
|
|
145 | (1) |
|
6.2 Particle and Energy Balances of Plasma (Zero Dimension) |
|
|
145 | (3) |
|
6.2.1 Zero-Dimensional Particle and Energy Balances |
|
|
145 | (1) |
|
6.2.2 Plasma Temperature and Density in Steady-State Operation |
|
|
146 | (2) |
|
|
148 | (2) |
|
|
150 | (2) |
|
|
152 | (3) |
|
|
152 | (1) |
|
6.5.2 Magnetic Flux Required for Operation |
|
|
153 | (1) |
|
6.5.3 Magnetic Flux to Be Supplied |
|
|
154 | (1) |
|
|
155 | (1) |
|
|
156 | (1) |
7 Blanket |
|
157 | (34) |
|
7.1 Functions Required for the Blanket |
|
|
157 | (1) |
|
|
157 | (8) |
|
7.2.1 Necessity of Tritium Production |
|
|
157 | (2) |
|
7.2.2 Tritium Breeding Ratio |
|
|
159 | (1) |
|
7.2.3 Tritium Doubling Time |
|
|
159 | (1) |
|
7.2.4 Improvement of Tritium Breeding Ratio |
|
|
160 | (5) |
|
7.2.4.1 6Li(n, T)α Reaction Cross Section |
|
|
161 | (1) |
|
7.2.4.2 7Li(n, n' T)αa Reaction Cross Section |
|
|
161 | (1) |
|
7.2.4.3 Tritium Breeding Material |
|
|
161 | (2) |
|
|
163 | (1) |
|
|
164 | (1) |
|
7.2.5 Recovery of Tritium |
|
|
165 | (1) |
|
7.3 Taking Out of Thermal Energy |
|
|
165 | (10) |
|
7.3.1 Energy Multiplication Factor of the Blanket |
|
|
165 | (1) |
|
7.3.2 Power Generation Efficiency and Coolant Temperature |
|
|
166 | (2) |
|
7.3.2.1 Temperature of Breeder and Multiplier Materials |
|
|
166 | (1) |
|
7.3.2.2 Temperature of the Blanket Structural Material |
|
|
167 | (1) |
|
|
167 | (1) |
|
7.3.3 Temperature Profile |
|
|
168 | (2) |
|
7.3.4 Power Generation Method |
|
|
170 | (5) |
|
7.3.4.1 Power Generation Methods of Fission Reactor and Thermal Power Plant |
|
|
171 | (1) |
|
7.3.4.2 Characteristics of Fusion Power Generation |
|
|
172 | (1) |
|
7.3.4.3 Combination of Coolants |
|
|
173 | (2) |
|
7.3.4.4 Fusion Power Generation |
|
|
175 | (1) |
|
7.4 Radiation Shielding Function |
|
|
175 | (1) |
|
|
175 | (1) |
|
7.4.2 Low Radioactivation |
|
|
176 | (1) |
|
|
176 | (5) |
|
|
176 | (3) |
|
7.5.1.1 Wear Amount of Lithium by Burning of Tritium Breeding Material |
|
|
177 | (1) |
|
7.5.1.2 Wear Amount of Beryllium by Burning of Neutron Multiplier Material |
|
|
178 | (1) |
|
7.5.1.3 Wear Amount of First Wall |
|
|
179 | (1) |
|
7.5.1.4 Nuclear Damage Due to Displacement Damage, Hydrogen and Helium Productions, Swelling, etc. |
|
|
179 | (1) |
|
7.5.1.5 Change in Thermal Life of Structural Materials Due to Cycle Thermal Fatigue |
|
|
179 | (1) |
|
|
179 | (2) |
|
7.5.2.1 Wear Amount and Replacement Frequency |
|
|
179 | (1) |
|
7.5.2.2 Remote Maintenance Method |
|
|
180 | (1) |
|
|
181 | (6) |
|
7.6.1 Blanket Classification |
|
|
181 | (1) |
|
|
181 | (1) |
|
|
181 | (4) |
|
7.6.3.1 Blanket Configuration |
|
|
181 | (2) |
|
7.6.3.2 Size of a Blanket |
|
|
183 | (2) |
|
|
185 | (2) |
|
|
187 | (2) |
|
|
189 | (2) |
8 Plasma-Facing Components |
|
191 | (36) |
|
8.1 Functions Required for Plasma-Facing Components |
|
|
191 | (2) |
|
|
191 | (1) |
|
|
191 | (1) |
|
8.1.1.2 Plasma Particle Control |
|
|
191 | (1) |
|
8.1.1.3 Thermal Treatment of Plasma Thermal Energy |
|
|
192 | (1) |
|
8.1.2 Limiter and Divertor |
|
|
192 | (1) |
|
8.2 Divertor Characteristics (in Steady State) |
|
|
193 | (8) |
|
8.2.1 Basic Characteristics of Divertor Plasma |
|
|
193 | (1) |
|
|
194 | (2) |
|
8.2.3 Attached State and Detached State |
|
|
196 | (1) |
|
8.2.4 Two-Dimensional Divertor Analysis Model |
|
|
197 | (3) |
|
8.2.5 Measures for Reducing Particle and Thermal Loads |
|
|
200 | (1) |
|
|
200 | (1) |
|
|
200 | (1) |
|
8.2.5.3 Average Heat Flux to the Divertor Plate |
|
|
200 | (1) |
|
8.3 Divertor Characteristics (in Non-steady State) |
|
|
201 | (2) |
|
|
201 | (1) |
|
|
202 | (1) |
|
|
202 | (1) |
|
8.3.2.2 Electromagnetic Force |
|
|
203 | (1) |
|
8.4 Structures of Limiter and Divertor |
|
|
203 | (5) |
|
8.4.1 Shape and Type of Limiter and Divertor |
|
|
203 | (3) |
|
8.4.1.1 Trends in Impurity Control Research |
|
|
203 | (1) |
|
8.4.1.2 Limiter and Pumped Limiter |
|
|
204 | (1) |
|
|
204 | (1) |
|
8.4.1.4 Comparison of Pumped Limiter and Divertor |
|
|
205 | (1) |
|
8.4.2 Comparison of Single Null Divertor and Double Null Divertor |
|
|
206 | (1) |
|
|
206 | (2) |
|
|
208 | (9) |
|
8.5.1 Design Conditions and Design Items |
|
|
208 | (2) |
|
|
210 | (2) |
|
|
212 | (2) |
|
8.5.3.1 Heat Receiving Plate Structure |
|
|
212 | (1) |
|
8.5.3.2 Eddy Current Suppression Structure |
|
|
213 | (1) |
|
8.5.3.3 Reduction of Stress and Strain |
|
|
213 | (1) |
|
|
213 | (1) |
|
|
214 | (3) |
|
|
217 | (5) |
|
8.6.1 Particle Load and Thermal Load |
|
|
217 | (1) |
|
8.6.2 First-Wall Structure |
|
|
218 | (2) |
|
8.6.2.1 Overall Structure |
|
|
218 | (1) |
|
8.6.2.2 Protection Structure |
|
|
218 | (1) |
|
8.6.2.3 Flow Path Cross Section |
|
|
218 | (2) |
|
|
220 | (1) |
|
|
220 | (2) |
|
|
222 | (1) |
|
|
222 | (5) |
9 Coil System |
|
227 | (46) |
|
|
227 | (1) |
|
|
227 | (1) |
|
9.1.2 Necessity of Superconducting Coil |
|
|
227 | (1) |
|
9.2 Basics of Superconducting Coils |
|
|
228 | (10) |
|
9.2.1 Characteristics of Superconductivity |
|
|
228 | (1) |
|
9.2.2 Superconducting Materials |
|
|
228 | (1) |
|
9.2.3 Manufacturing Methods for Superconducting Wires |
|
|
229 | (2) |
|
|
229 | (1) |
|
|
230 | (1) |
|
|
230 | (1) |
|
|
231 | (1) |
|
9.2.3.5 Bismuth-Based Oxide |
|
|
231 | (1) |
|
9.2.3.6 Yttrium-Based Oxide |
|
|
231 | (1) |
|
9.2.4 Superconducting Wires |
|
|
231 | (1) |
|
|
231 | (1) |
|
9.2.4.2 Stabilizing Materials (Stabilizers) |
|
|
232 | (1) |
|
|
232 | (1) |
|
9.2.4.4 Cooling Performance |
|
|
232 | (1) |
|
9.2.5 Thermal Load and Cooling Methods |
|
|
232 | (2) |
|
|
232 | (1) |
|
|
233 | (1) |
|
9.2.6 Conductor Structure |
|
|
234 | (3) |
|
|
235 | (1) |
|
|
236 | (1) |
|
|
236 | (1) |
|
9.2.6.4 Coil Average Current Density |
|
|
237 | (1) |
|
|
237 | (1) |
|
|
237 | (1) |
|
|
237 | (1) |
|
9.2.7.2 Structural Material |
|
|
238 | (1) |
|
9.3 Basics of Toroidal Magnetic Field Coil |
|
|
238 | (7) |
|
9.3.1 Functions for Toroidal Magnetic Field Coil |
|
|
239 | (1) |
|
9.3.2 Coil Current and Number of Coils |
|
|
239 | (2) |
|
|
239 | (1) |
|
|
239 | (2) |
|
|
241 | (1) |
|
9.3.3 Electromagnetic Force Generated in Coil |
|
|
241 | (1) |
|
9.3.3.1 Extensional Force |
|
|
241 | (1) |
|
|
242 | (1) |
|
9.3.3.3 Overturning Force |
|
|
242 | (1) |
|
|
242 | (3) |
|
|
242 | (1) |
|
9.3.4.2 Three-Arc Approximation |
|
|
243 | (2) |
|
9.3.5 Maximum Magnetic Field |
|
|
245 | (1) |
|
9.4 Design of Toroidal Magnetic Field Coil |
|
|
245 | (9) |
|
|
246 | (1) |
|
9.4.1.1 Selection of Superconducting Material |
|
|
246 | (1) |
|
|
246 | (1) |
|
9.4.2 Design of Coil Structure |
|
|
246 | (1) |
|
|
246 | (1) |
|
9.4.2.2 Selection of Structural Materials |
|
|
246 | (1) |
|
|
247 | (2) |
|
9.4.3.1 Support Structure for the Centering Force |
|
|
247 | (2) |
|
9.4.3.2 Support Structure for the Overturning Force |
|
|
249 | (1) |
|
9.4.3.3 Support Structure of Own Weight |
|
|
249 | (1) |
|
|
249 | (5) |
|
9.5 Basics of Poloidal Magnetic Field Coil |
|
|
254 | (2) |
|
9.5.1 Functions of Poloidal Magnetic Field Coil |
|
|
254 | (1) |
|
9.5.2 Waveform Pattern of Coil Current for Control of Plasma Position and Shape |
|
|
255 | (1) |
|
9.5.3 Position of Poloidal Magnetic Field Coil |
|
|
256 | (1) |
|
9.6 Current Control of Poloidal Magnetic Field Coil |
|
|
256 | (7) |
|
9.6.1 Magnetic Field Configuration to Determine the Plasma Shape |
|
|
256 | (1) |
|
9.6.2 Control of Plasma Position and Shape |
|
|
257 | (1) |
|
9.6.3 Generation Types of Poloidal Magnetic Field |
|
|
258 | (1) |
|
9.6.4 Function-Specific Coil System |
|
|
259 | (1) |
|
|
260 | (3) |
|
9.6.5.1 Number of PF Coils |
|
|
260 | (1) |
|
9.6.5.2 Determining the PF Coil Position |
|
|
260 | (1) |
|
9.6.5.3 Determining the PF Coil Current |
|
|
260 | (3) |
|
9.7 Design of Poloidal Magnetic Field Coil |
|
|
263 | (2) |
|
|
263 | (1) |
|
9.7.1.1 Selection of Superconducting Material |
|
|
263 | (1) |
|
|
263 | (1) |
|
9.7.2 Design of Coil Structure |
|
|
263 | (1) |
|
|
263 | (1) |
|
9.7.2.2 Selection of Structural Materials |
|
|
263 | (1) |
|
9.7.2.3 Support Structure |
|
|
264 | (1) |
|
|
264 | (1) |
|
9.8 Basics of Central Solenoid Coil |
|
|
265 | (2) |
|
9.8.1 Functions of Central Solenoid Coil |
|
|
265 | (1) |
|
9.8.2 Magnetic Field of Central Solenoid Coil |
|
|
266 | (1) |
|
9.8.3 Supplied Magnetic Flux |
|
|
266 | (1) |
|
9.9 Design of Central Solenoid Coil |
|
|
267 | (3) |
|
|
267 | (1) |
|
9.9.1.1 Selection of Superconducting Material |
|
|
267 | (1) |
|
|
268 | (1) |
|
9.9.2 Design of Coil Structure |
|
|
268 | (1) |
|
|
268 | (1) |
|
9.9.2.2 Selection of Structural Materials |
|
|
268 | (1) |
|
9.9.2.3 Support Structure |
|
|
268 | (1) |
|
|
268 | (2) |
|
|
270 | (1) |
|
|
271 | (2) |
10 Plasma Heating and Current Drive |
|
273 | (112) |
|
10.1 Necessity of Plasma Heating and Current Drive |
|
|
273 | (2) |
|
|
273 | (1) |
|
|
274 | (1) |
|
10.2 Basics of NBI Heating |
|
|
275 | (6) |
|
10.2.1 Ionization of Neutral Particle Beam |
|
|
275 | (1) |
|
10.2.2 Trajectory of Ion Beam |
|
|
276 | (3) |
|
10.2.2.1 Direction of Injection |
|
|
276 | (1) |
|
10.2.2.2 Trapped Condition |
|
|
277 | (1) |
|
10.2.2.3 Trajectory of Beam Ion |
|
|
278 | (1) |
|
10.2.3 Plasma Heating by Energy Relaxation |
|
|
279 | (2) |
|
10.3 Basics of NBI Current Drive |
|
|
281 | (4) |
|
|
281 | (1) |
|
10.3.2 Current Drive Efficiency |
|
|
282 | (2) |
|
10.3.3 Shine Through Rate |
|
|
284 | (1) |
|
10.3.4 Current Drive Efficiency Obtained by Experiments |
|
|
284 | (1) |
|
|
285 | (2) |
|
10.4.1 Trapped Electron Orbit and Bootstrap Current |
|
|
285 | (1) |
|
10.4.2 Ratio of the Bootstrap Current |
|
|
286 | (1) |
|
10.5 Basics of Radio Frequency Heating |
|
|
287 | (14) |
|
10.5.1 Dispersion Relation |
|
|
287 | (1) |
|
10.5.2 Dispersion Relation of Cold Plasma |
|
|
288 | (1) |
|
10.5.3 Dispersion Relation of Hot Plasma |
|
|
289 | (1) |
|
10.5.4 Dispersion Relation of Plasma with Maxwell Distribution |
|
|
290 | (1) |
|
10.5.5 Characteristics of RF Waves |
|
|
291 | (2) |
|
10.5.5.1 Phase Velocity and Group Velocity |
|
|
291 | (1) |
|
10.5.5.2 Cutoff and Resonance |
|
|
292 | (1) |
|
|
292 | (1) |
|
10.5.6 Propagation Characteristics of RF Waves |
|
|
293 | (4) |
|
10.5.6.1 When the Wave Number Vector is Parallel to the Magnetic Field |
|
|
294 | (2) |
|
10.5.6.2 When the Wave Number Vector is Perpendicular to the Magnetic Field |
|
|
296 | (1) |
|
10.5.7 Principles of Plasma Heating |
|
|
297 | (3) |
|
|
298 | (1) |
|
10.5.7.2 Transit Time Damping |
|
|
298 | (1) |
|
10.5.7.3 Cyclotron Damping |
|
|
299 | (1) |
|
10.5.7.4 Absorption Power |
|
|
299 | (1) |
|
10.5.8 Propagation in Nonuniform Plasma |
|
|
300 | (1) |
|
|
301 | (12) |
|
|
301 | (2) |
|
10.6.2 Ion Cyclotron Wave |
|
|
303 | (4) |
|
10.6.2.1 Right-handed Cut Off and Left-handed Cut Off |
|
|
304 | (1) |
|
10.6.2.2 Density at Which the Wave can Propagate |
|
|
305 | (1) |
|
10.6.2.3 Characteristics of the Slow Wave |
|
|
305 | (1) |
|
10.6.2.4 Characteristics of the Fast Wave |
|
|
305 | (2) |
|
|
307 | (3) |
|
10.6.3.1 Resonance and Cut Off |
|
|
307 | (2) |
|
10.6.3.2 Accessibility Condition |
|
|
309 | (1) |
|
10.6.4 Electron Cyclotron Wave |
|
|
310 | (3) |
|
10.6.4.1 Absorption Power |
|
|
311 | (1) |
|
10.6.4.2 Resonance and Cut Off |
|
|
311 | (1) |
|
10.6.4.3 Propagation Path |
|
|
311 | (2) |
|
10.7 Basics of RF Current Drive |
|
|
313 | (17) |
|
10.7.1 General Theory of RF Current Drive |
|
|
313 | (3) |
|
10.7.1.1 Various Noninductive Current Drive Methods |
|
|
313 | (1) |
|
10.7.1.2 Normalized Current Drive Efficiency |
|
|
314 | (1) |
|
10.7.1.3 Current Drive Using Momentum of the Wave |
|
|
315 | (1) |
|
10.7.1.4 Current Drive Using Anisotropy of the Velocity Space |
|
|
316 | (1) |
|
10.7.1.5 Current Drive Efficiency |
|
|
316 | (1) |
|
10.7.2 Current Drive Using Momentum of the Wave |
|
|
316 | (5) |
|
10.7.2.1 Fokker-Planck Equation in One and Two Dimensions |
|
|
316 | (2) |
|
10.7.2.2 Driven Current Density and Current Drive Power Density |
|
|
318 | (1) |
|
10.7.2.3 LHCD (One-Dimensional Analysis) |
|
|
318 | (1) |
|
10.7.2.4 DC Electric Field |
|
|
318 | (2) |
|
10.7.2.5 LHCD (Two-Dimensional Analysis) |
|
|
320 | (1) |
|
10.7.3 Current Drive with Anisotropy of the Velocity Space |
|
|
321 | (6) |
|
10.7.3.1 Two-Dimensional Fokker-Planck Equation |
|
|
321 | (2) |
|
10.7.3.2 Relativistic Effect |
|
|
323 | (1) |
|
|
324 | (3) |
|
10.7.4 Current Drive Efficiency Obtained by Experiments |
|
|
327 | (3) |
|
10.7.4.1 Fast Wave Current Drive (FWCD) |
|
|
327 | (1) |
|
|
328 | (1) |
|
|
329 | (1) |
|
|
330 | (7) |
|
10.8.1 Design Requirements |
|
|
330 | (1) |
|
10.8.1.1 Required Functions |
|
|
330 | (1) |
|
10.8.1.2 Design Requirements |
|
|
330 | (1) |
|
10.8.1.3 System Efficiency |
|
|
330 | (1) |
|
10.8.2 System Configuration |
|
|
331 | (1) |
|
10.8.2.1 Positive-ion NBI |
|
|
331 | (1) |
|
10.8.2.2 Negative-ion NBI |
|
|
332 | (1) |
|
10.8.3 Negative-ion Source |
|
|
332 | (2) |
|
10.8.3.1 Negative-ion Generator |
|
|
332 | (2) |
|
|
334 | (1) |
|
10.8.4 Beam Transport System |
|
|
334 | (1) |
|
10.8.4.1 Beam Profile Control Unit |
|
|
334 | (1) |
|
10.8.4.2 Neutralization Cell (Neutralizer) |
|
|
334 | (1) |
|
10.8.4.3 Residual Ion Bending Magnet and Residual Ion Dump |
|
|
335 | (1) |
|
10.8.4.4 Vacuum Exhaust System |
|
|
335 | (1) |
|
|
335 | (1) |
|
|
336 | (1) |
|
10.9 System Design of the Ion Cyclotron Wave |
|
|
337 | (5) |
|
10.9.1 Design Requirements |
|
|
337 | (2) |
|
10.9.1.1 Required Functions |
|
|
337 | (1) |
|
10.9.1.2 ICRF Excitation Method |
|
|
338 | (1) |
|
10.9.1.3 System Efficiency |
|
|
338 | (1) |
|
10.9.2 System Configuration |
|
|
339 | (1) |
|
|
339 | (1) |
|
10.9.2.2 Transmission System |
|
|
339 | (1) |
|
10.9.2.3 Injection System |
|
|
340 | (1) |
|
|
340 | (2) |
|
|
342 | (1) |
|
10.10 System Design of the Lower Hybrid Wave |
|
|
342 | (8) |
|
10.10.1 Design Requirements |
|
|
342 | (2) |
|
10.10.1.1 Required Functions |
|
|
342 | (1) |
|
10.10.1.2 LHW Excitation Method |
|
|
343 | (1) |
|
10.10.1.3 Plasma Density in Front of the Launcher |
|
|
344 | (1) |
|
10.10.1.4 System Efficiency |
|
|
344 | (1) |
|
10.10.2 System Configuration |
|
|
344 | (4) |
|
|
345 | (1) |
|
10.10.2.2 Transmission System |
|
|
345 | (1) |
|
10.10.2.3 Injection System (Launcher) |
|
|
346 | (1) |
|
|
347 | (1) |
|
|
348 | (2) |
|
10.10.4 Future Challenges |
|
|
350 | (1) |
|
10.11 System Design of the Electron Cyclotron Wave |
|
|
350 | (8) |
|
10.11.1 Design Requirements |
|
|
350 | (3) |
|
10.11.1.1 Required Functions |
|
|
350 | (1) |
|
10.11.1.2 ECW Excitation Method |
|
|
351 | (1) |
|
10.11.1.3 System Efficiency |
|
|
352 | (1) |
|
10.11.2 System Configuration |
|
|
353 | (3) |
|
10.11.2.1 Various System Configurations |
|
|
353 | (1) |
|
|
354 | (1) |
|
10.11.2.3 Transmission System |
|
|
355 | (1) |
|
10.11.2.4 Injection System (Launcher) |
|
|
355 | (1) |
|
|
356 | (1) |
|
10.11.4 Future Challenges |
|
|
357 | (1) |
|
|
358 | (5) |
|
|
363 | (6) |
|
|
369 | (4) |
|
|
373 | (4) |
|
|
377 | (3) |
|
|
380 | (5) |
11 Vacuum Vessel |
|
385 | (20) |
|
11.1 Functions Required for Vacuum Vessel |
|
|
385 | (1) |
|
11.2 Holding Ultra-High Vacuum and High-Temperature Baking |
|
|
385 | (2) |
|
11.2.1 Degree of Vacuum in the Vacuum Vessel |
|
|
385 | (1) |
|
11.2.2 Holding the Ultra-high Vacuum |
|
|
386 | (1) |
|
11.2.3 High-Temperature Baking |
|
|
387 | (1) |
|
11.3 Ensuring Electrical Resistance, Plasma Position Control, and Toroidal Field Ripple |
|
|
387 | (5) |
|
11.3.1 Electrical Resistance of the Vacuum Vessel |
|
|
387 | (3) |
|
11.3.2 Ensuring Electrical Resistance |
|
|
390 | (1) |
|
11.3.3 Plasma Position Control |
|
|
391 | (1) |
|
11.3.4 Toroidal Field Ripple |
|
|
391 | (1) |
|
11.4 Supporting the Electromagnetic Force and In-Vessel Equipment |
|
|
392 | (2) |
|
11.4.1 Supporting the Electromagnetic Force |
|
|
392 | (1) |
|
11.4.2 Supporting the Vacuum Vessel |
|
|
392 | (2) |
|
11.5 Cooling Performance, Radiation Shielding, Confinement, Assembly, and Maintenance |
|
|
394 | (2) |
|
11.5.1 Cooling Performance |
|
|
394 | (1) |
|
11.5.2 Radiation Shielding |
|
|
394 | (1) |
|
11.5.3 Confinement of Radioactive Material |
|
|
394 | (1) |
|
11.5.4 Assembly and Maintenance |
|
|
395 | (1) |
|
|
395 | (1) |
|
|
395 | (1) |
|
11.6 Design of Vacuum Vessel |
|
|
396 | (6) |
|
11.6.1 Structural Standard |
|
|
396 | (1) |
|
|
396 | (2) |
|
|
398 | (9) |
|
11.6.3.1 Holding Ultra-high Vacuum |
|
|
398 | (1) |
|
11.6.3.2 Surface Cleaning System |
|
|
399 | (1) |
|
11.6.3.3 Ensuring Electrical Resistance, Plasma Position Control, and Toroidal Field Ripple |
|
|
400 | (1) |
|
11.6.3.4 Supporting Electromagnetic Force and In-vessel Equipment |
|
|
400 | (1) |
|
11.6.3.5 Cooling of Vacuum Vessel, Radiation Shielding, and Confinement |
|
|
400 | (1) |
|
|
401 | (1) |
|
|
401 | (1) |
|
|
402 | (1) |
|
|
402 | (3) |
12 Fuel Cycle System |
|
405 | (20) |
|
12.1 Functions Required for the Fuel Cycle System |
|
|
405 | (1) |
|
12.2 Configuration of the Fuel Cycle System |
|
|
405 | (2) |
|
|
407 | (1) |
|
|
407 | (1) |
|
|
407 | (1) |
|
|
408 | (6) |
|
12.4.1 Exhaust Gases by Source |
|
|
408 | (1) |
|
12.4.2 Plasma Vacuum Exhaust System |
|
|
408 | (6) |
|
12.4.2.1 Types of Vacuum Exhaust Pump |
|
|
408 | (1) |
|
|
409 | (1) |
|
12.4.2.3 Initial Ultimate Pressure |
|
|
409 | (2) |
|
12.4.2.4 Helium Pumping Speed |
|
|
411 | (1) |
|
|
412 | (1) |
|
12.4.2.6 Helium Accumulation on the Cryopanel |
|
|
412 | (1) |
|
|
413 | (1) |
|
12.5 Fuel Clean-up System |
|
|
414 | (2) |
|
12.5.1 Kinds of Recovered Gas and Amount of Exhaust Gas |
|
|
414 | (1) |
|
12.5.2 Configuration of the Fuel Clean-Up System |
|
|
414 | (2) |
|
12.6 Hydrogen Isotope Separation System |
|
|
416 | (2) |
|
12.7 Atmosphere Detritiation System |
|
|
418 | (1) |
|
12.8 Water Detritiation System |
|
|
418 | (1) |
|
|
419 | (1) |
|
12.10 Material Accountancy of Tritium |
|
|
420 | (1) |
|
|
420 | (3) |
|
12.11.1 Fuel Cycle System |
|
|
420 | (1) |
|
|
421 | (1) |
|
12.11.3 Tokamak Exhaust Processing System |
|
|
422 | (1) |
|
12.11.4 Hydrogen Isotope Separation System |
|
|
422 | (1) |
|
12.11.5 Atmosphere Detritiation System |
|
|
422 | (1) |
|
12.11.6 Water Detritiation System |
|
|
423 | (1) |
|
12.11.7 Fuel Storage System |
|
|
423 | (1) |
|
|
423 | (1) |
|
|
424 | (1) |
13 Cryostat |
|
425 | (10) |
|
13.1 Functions of Cryostat |
|
|
425 | (1) |
|
|
425 | (1) |
|
|
425 | (4) |
|
13.3.1 Design Requirements |
|
|
427 | (1) |
|
|
428 | (1) |
|
|
429 | (3) |
|
|
432 | (1) |
|
|
433 | (2) |
14 Nuclear Design |
|
435 | (22) |
|
14.1 Items Required for Nuclear Design |
|
|
435 | (2) |
|
|
437 | (4) |
|
|
437 | (3) |
|
14.2.1.1 Equipment Shielding and Biological Shielding |
|
|
437 | (1) |
|
14.2.1.2 Installation Position of Shields |
|
|
438 | (1) |
|
14.2.1.3 Activation of Air and Cooling Water |
|
|
439 | (1) |
|
14.2.2 Evaluation Method of Radiation Shielding |
|
|
440 | (2) |
|
14.2.2.1 Intensity of Neutron Source |
|
|
440 | (1) |
|
|
440 | (1) |
|
|
440 | (1) |
|
14.2.2.4 Analysis Procedure |
|
|
440 | (1) |
|
|
441 | (1) |
|
|
441 | (1) |
|
|
442 | (5) |
|
|
442 | (2) |
|
|
442 | (2) |
|
|
444 | (1) |
|
|
444 | (4) |
|
14.5.2.1 Displacement Damage |
|
|
444 | (1) |
|
14.5.2.2 Damage Due to Nuclear Transmutation |
|
|
445 | (2) |
|
|
447 | (1) |
|
|
448 | (5) |
|
|
449 | (1) |
|
|
449 | (1) |
|
|
450 | (1) |
|
|
450 | (2) |
|
14.7.5 Dose Rate by Skyshine |
|
|
452 | (1) |
|
14.7.6 Nuclear Heating and So on |
|
|
452 | (1) |
|
|
453 | (1) |
|
|
453 | (4) |
15 Operation and Maintenance |
|
457 | (16) |
|
15.1 Functions Required for Operation and Maintenance |
|
|
457 | (1) |
|
15.1.1 High Plant Availability |
|
|
457 | (1) |
|
15.1.2 Maintenance Method Consistent with the Reactor Structure |
|
|
457 | (1) |
|
15.1.3 Remote Maintenance with High Efficiency and High Reliability |
|
|
458 | (1) |
|
|
458 | (1) |
|
15.3 Equipment to be Inspected and Maintained |
|
|
459 | (2) |
|
15.4 Frequency of Maintenance |
|
|
461 | (1) |
|
15.5 Remote Maintenance Methods |
|
|
461 | (2) |
|
15.6 Process of Remote Maintenance |
|
|
463 | (2) |
|
15.7 In-Vessel Transport System |
|
|
465 | (1) |
|
|
466 | (4) |
|
15.8.1 Frequency of Maintenance and Maintenance Period |
|
|
466 | (1) |
|
15.8.2 In-Vessel Transport System |
|
|
466 | (2) |
|
15.8.2.1 Maintenance of Blanket Module |
|
|
466 | (1) |
|
15.8.2.2 Maintenance of Divertor |
|
|
467 | (1) |
|
15.8.3 Ex-Vessel Transport System |
|
|
468 | (1) |
|
15.8.4 Piping Cutting/Welding Tool |
|
|
469 | (1) |
|
15.8.5 Failure of Maintenance Device |
|
|
469 | (1) |
|
|
469 | (1) |
|
|
470 | (1) |
|
|
471 | (2) |
16 Cooling System |
|
473 | (10) |
|
16.1 Functions of Cooling System |
|
|
473 | (1) |
|
16.2 Configuration of Cooling System |
|
|
473 | (3) |
|
|
473 | (1) |
|
|
474 | (1) |
|
|
474 | (2) |
|
|
476 | (2) |
|
|
478 | (2) |
|
16.4.1 Configuration of Cooling System |
|
|
478 | (2) |
|
16.4.1.1 Tokamak Cooling Water System |
|
|
478 | (1) |
|
16.4.1.2 Component Cooling Water System |
|
|
479 | (1) |
|
16.4.1.3 Chilled Water System |
|
|
480 | (1) |
|
16.4.1.4 Heat Rejection System |
|
|
480 | (1) |
|
16.4.2 Decay Heat Removal in Emergency |
|
|
480 | (3) |
|
16.4.2.1 Emergency Power Supply |
|
|
480 | (1) |
|
16.4.2.2 Natural Circulation Mode |
|
|
480 | (1) |
|
|
480 | (1) |
|
|
481 | (2) |
17 Power Supply System |
|
483 | (18) |
|
17.1 Functions Required for the Power Supply System |
|
|
483 | (1) |
|
17.2 Characteristics of the Power Supply System |
|
|
483 | (6) |
|
17.2.1 Power Supply Capacity |
|
|
483 | (1) |
|
17.2.2 Equipment and Facilities to Which Power Is Supplied |
|
|
484 | (1) |
|
17.2.3 Technologies to Reduce Coil Power Supply Capacity |
|
|
485 | (3) |
|
17.2.3.1 Hybrid Coil System |
|
|
485 | (1) |
|
17.2.3.2 Superconductivity |
|
|
485 | (1) |
|
17.2.3.3 Steady-state Operation |
|
|
486 | (2) |
|
17.2.4 Configuration of Power Supply |
|
|
488 | (1) |
|
17.3 Power Supply for Toroidal Magnetic Field Coil |
|
|
489 | (3) |
|
|
489 | (1) |
|
17.3.2 Power Supply Voltage |
|
|
490 | (1) |
|
17.3.3 Stored Energy and Coil Protection |
|
|
491 | (1) |
|
17.3.4 Protection Resistor |
|
|
491 | (1) |
|
17.4 Power Supply for Poloidal Magnetic Field Coil |
|
|
492 | (3) |
|
|
492 | (2) |
|
17.4.1.1 Mutual Inductance |
|
|
492 | (1) |
|
17.4.1.2 Self-inductance of PF Coil |
|
|
492 | (1) |
|
17.4.1.3 Self-inductance of CS Coil |
|
|
493 | (1) |
|
17.4.2 Power Supply Voltage |
|
|
494 | (1) |
|
17.4.3 Power Supply Capacity |
|
|
494 | (1) |
|
|
495 | (1) |
|
|
495 | (1) |
|
17.4.5.1 At the Time of Quench |
|
|
495 | (1) |
|
17.4.5.2 At the Time of Plasma Disruption |
|
|
495 | (1) |
|
|
495 | (3) |
|
|
496 | (1) |
|
17.5.2 Power Supply of Plasma Heating and Current Drive System (H&CD) |
|
|
497 | (1) |
|
|
498 | (1) |
|
|
498 | (3) |
18 Operation Control and Diagnostic Systems |
|
501 | (38) |
|
18.1 Functions of Operation Control and Diagnostic Systems |
|
|
501 | (1) |
|
|
502 | (5) |
|
|
502 | (1) |
|
|
503 | (1) |
|
18.2.3 Transient Response of a System |
|
|
504 | (1) |
|
|
504 | (1) |
|
|
505 | (2) |
|
18.2.5.1 Ideal PID Controller |
|
|
505 | (1) |
|
18.2.5.2 Practical Noninterference-Type PID Controller |
|
|
505 | (2) |
|
18.3 Operation Control System |
|
|
507 | (4) |
|
18.3.1 Central Control System |
|
|
507 | (1) |
|
|
507 | (4) |
|
18.3.2.1 Control of Fusion Power |
|
|
508 | (1) |
|
|
509 | (1) |
|
18.3.2.3 Disruption Control |
|
|
509 | (2) |
|
|
511 | (18) |
|
18.4.1 Passive and Active Measurements |
|
|
511 | (1) |
|
|
512 | (2) |
|
18.4.2.1 Electrostatic Probe |
|
|
512 | (1) |
|
18.4.2.2 Magnetic Probe, Magnetic Loop, and Rogowski Coil |
|
|
513 | (1) |
|
18.4.2.3 Diamagnetic Coil |
|
|
513 | (1) |
|
18.4.3 Electromagnetic Wave Measurement |
|
|
514 | (8) |
|
18.4.3.1 Passive Electromagnetic Wave Measurement |
|
|
514 | (4) |
|
18.4.3.2 Active Electromagnetic Wave Measurement |
|
|
518 | (4) |
|
18.4.4 Particle Measurement |
|
|
522 | (7) |
|
18.4.4.1 Passive Particle Measurement |
|
|
522 | (6) |
|
18.4.4.2 Active Particle Measurement |
|
|
528 | (1) |
|
|
529 | (6) |
|
18.5.1 Operation Control System |
|
|
529 | (4) |
|
18.5.1.1 Plant Control System |
|
|
530 | (1) |
|
|
530 | (1) |
|
18.5.1.3 Plasma Operation |
|
|
531 | (2) |
|
|
533 | (2) |
|
|
535 | (1) |
|
|
536 | (3) |
19 Safety |
|
539 | (24) |
|
19.1 Requirements for Safety |
|
|
539 | (1) |
|
19.2 Radioactive Materials |
|
|
540 | (5) |
|
|
540 | (1) |
|
|
541 | (1) |
|
|
541 | (1) |
|
19.2.4 Dose Equivalent/Effective Dose Equivalent |
|
|
541 | (1) |
|
19.2.5 Equivalent Dose/Effective Dose |
|
|
542 | (1) |
|
19.2.6 Committed Effective Dose |
|
|
543 | (1) |
|
19.2.7 Tritium Concentration Limit |
|
|
544 | (1) |
|
19.2.8 Biological Hazard Potential |
|
|
544 | (1) |
|
19.3 How to Ensure Safety |
|
|
545 | (6) |
|
|
545 | (1) |
|
19.3.2 Goal of the Safety |
|
|
546 | (1) |
|
|
546 | (1) |
|
|
547 | (1) |
|
19.3.3 Basic Concept of Ensuring the Safety |
|
|
547 | (1) |
|
|
547 | (1) |
|
19.3.3.2 Implementation of Ensuring Safety |
|
|
548 | (1) |
|
19.3.4 Basic Concept of the Safety Design |
|
|
548 | (2) |
|
19.3.5 Evaluation of the Safety Design |
|
|
550 | (1) |
|
|
550 | (1) |
|
|
551 | (7) |
|
|
551 | (1) |
|
19.4.2 Basic Concept of Ensuring the Safety |
|
|
552 | (1) |
|
19.4.3 Implementation of Ensuring the Safety |
|
|
552 | (3) |
|
19.4.3.1 Reduction of Radioactive Materials |
|
|
552 | (1) |
|
19.4.3.2 Confinement Barrier of Radioactive Materials |
|
|
552 | (1) |
|
19.4.3.3 Energy That Damages the Confinement Barriers |
|
|
553 | (2) |
|
19.4.3.4 Zoning Management |
|
|
555 | (1) |
|
|
555 | (1) |
|
|
556 | (7) |
|
19.4.5.1 Events for Analysis |
|
|
556 | (2) |
|
19.4.5.2 Safety Analysis Code |
|
|
558 | (1) |
|
|
558 | (2) |
|
|
560 | (3) |
20 Analysis Code |
|
563 | (30) |
|
|
563 | (3) |
|
|
563 | (1) |
|
20.1.2 Flow of Reactor Design |
|
|
563 | (3) |
|
20.1.2.1 Requirements as Power Reactor |
|
|
564 | (1) |
|
20.1.2.2 Construction of Reactor Concept |
|
|
564 | (1) |
|
20.1.2.3 Clarification of Constraints |
|
|
565 | (1) |
|
|
565 | (1) |
|
20.1.2.5 Design of Reactor Structure |
|
|
566 | (1) |
|
20.1.2.6 Plant Design, Safety, and Economic Evaluations |
|
|
566 | (1) |
|
20.2 Various Types of Analysis Codes |
|
|
566 | (1) |
|
20.2.1 Plasma Analysis Code |
|
|
566 | (1) |
|
20.2.2 Equipment Analysis/Design Code |
|
|
567 | (1) |
|
20.2.3 Safety Analysis Code |
|
|
567 | (1) |
|
20.2.4 Detailed Analysis Code |
|
|
567 | (1) |
|
20.3 Reactor Design System Code |
|
|
567 | (3) |
|
|
567 | (1) |
|
20.3.2 Various System Codes |
|
|
568 | (2) |
|
20.4 System Code for Reactor Conceptual Design |
|
|
570 | (9) |
|
20.4.1 Power Balance (Energy Balance per Unit Time) |
|
|
570 | (1) |
|
|
571 | (1) |
|
|
572 | (1) |
|
|
573 | (1) |
|
20.4.5 Electromagnetic Force Acting on the TF Coil |
|
|
573 | (2) |
|
20.4.5.1 Tensile Stress Due to Vertical Force |
|
|
574 | (1) |
|
20.4.5.2 Bending Stress Due to Centering Force |
|
|
575 | (1) |
|
20.4.5.3 Bending Stress Due to Overturning Force |
|
|
575 | (1) |
|
|
575 | (2) |
|
|
577 | (1) |
|
|
577 | (1) |
|
20.4.9 Power Supply Capacity |
|
|
578 | (1) |
|
|
578 | (1) |
|
|
578 | (1) |
|
20.5 System Codes for Economic Evaluation |
|
|
579 | (3) |
|
20.5.1 Cost of Electricity |
|
|
579 | (1) |
|
20.5.2 Initial Capitalized Investment |
|
|
580 | (1) |
|
20.5.3 Direct Cost of Construction |
|
|
580 | (1) |
|
20.5.4 Annual Cost of Component Replacement at Specific Intervals |
|
|
581 | (1) |
|
20.5.5 Annual Cost of Operation and Maintenance |
|
|
581 | (1) |
|
20.5.6 Annual Fuel Cost and Annual Cost of Waste Disposal and Decommissioning |
|
|
581 | (1) |
|
20.6 System Codes for Plasma Dynamics Evaluation |
|
|
582 | (8) |
|
20.6.1 Particle Balance and Energy Balance |
|
|
582 | (2) |
|
20.6.1.1 Particle Balance Equation |
|
|
582 | (1) |
|
20.6.1.2 Energy Balance Equations |
|
|
583 | (1) |
|
|
584 | (1) |
|
|
584 | (1) |
|
20.6.4 Thermal Load on Plasma-Facing Wall |
|
|
585 | (1) |
|
20.6.5 Distribution of Nuclear Heating Rate |
|
|
586 | (1) |
|
2Q.6.6 Impurity Contamination Model in Plasma |
|
|
586 | (1) |
|
20.6.7 Heat Transfer Model of Reactor Structure |
|
|
587 | (1) |
|
|
588 | (2) |
|
|
590 | (1) |
|
|
590 | (3) |
Index |
|
593 | |