Muutke küpsiste eelistusi

E-raamat: Fusion Reactor Design: Plasma Physics, Fuel Cycle System, Operation and Maintenance

  • Formaat: PDF+DRM
  • Ilmumisaeg: 29-Oct-2021
  • Kirjastus: John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9783527832927
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 258,05 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: PDF+DRM
  • Ilmumisaeg: 29-Oct-2021
  • Kirjastus: John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9783527832927
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Provides a detailed overview of fusion reactor design, written by an international leader in the field  

Nuclear fusion—generating four times as much energy from the same mass of fuel as nuclear fission—is regarded by its proponents as a viable, eco-friendly alternative to gas-fired, coal-fired, and conventional power plants. Although the physics of nuclear fusion is thoroughly understood, the construction of prototype reactors currently presents significant technical challenges. Fusion Reactor Design: Plasma Physics, Fuel Cycle System, Operation and Maintenance provides a systematic, reader-friendly introduction to the characteristics, components, and critical systems of confinement fusion reactors.  

Focusing on the experimental Tokamak reactor, this up-to-date resource covers relevant plasma physics, necessary technology, analysis methods, and the other aspects of fusion reactors. In-depth chapters include derivations of key formulas, figures highlighting physical and structural characteristics of fusion reactors, illustrative numerical calculations, practical design examples, and more. Designed to help researchers and engineers understand and overcome the technological difficulties in making fusion power a reality, this volume: 

  • Provides in-depth knowledge on controlled thermonuclear fusion and its large-scale application in both current fusion reactors and future test reactors 
  • Covers plasma analysis, plasma equilibrium and stability, and plasma transport and confinement, and safety considerations 
  • Explains each component of plasma reactors, including divertors, superconducting coils, plasma heating and current drive systems, and vacuum vessels 
  • Discusses safety aspects of fusion reactors as well as computational approaches safety aspects of fusion reactors 

Fusion Reactor Design: Plasma Physics, Fuel Cycle System, Operation and Maintenance is required reading for undergraduate and graduate students studying plasma physics and fusion reactor technology, and an important reference for nuclear physicists, nuclear reactor manufacturers, and power engineers involved in fusion reactor research and advanced technology development. 

Preface xxv
1 Characteristics of the Fusion Reactor 1(16)
1.1 The Fusion Reactor as an Energy Source
1(2)
1.1.1 Trends in World Energy Consumption
1(1)
1.1.2 Energy Classification
1(1)
1.1.3 Nuclear Fusion Power Generation
2(1)
1.2 Nuclear Fusion Reaction
3(4)
1.2.1 Nuclear Reaction Used in the Fusion Reactor
3(1)
1.2.2 Cross Section of the Fusion Reaction
4(1)
1.2.3 Fusion Reaction Rate
5(2)
1.3 Plasma Confinement Concept
7(8)
1.3.1 Magnetic Confinement
7(6)
1.3.1.1 Linear System (Open-End System)
7(2)
1.3.1.2 Toroidal System
9(4)
1.3.2 Inertial Confinement
13(2)
References
15(2)
2 Basis of the Fusion Reactor 17(14)
2.1 Power Flow
17(2)
2.2 Fusion Reactor Structure
19(1)
2.3 Power Generation Conditions of the Fusion Reactor
20(2)
2.3.1 Power Flow of the Power Plant
20(1)
2.3.2 Plant Efficiency
21(1)
2.3.3 Fuel Supply Scenario
22(1)
2.4 Core Plasma Conditions
22(2)
2.4.1 Break-Even Condition and Self-Ignition Condition
22(1)
2.4.2 Lawson Criterion
22(2)
2.4.3 Typical Reactor Concepts
24(1)
2.5 Requirements of Plasma in the Fusion Reactor
24(2)
2.5.1 Fusion Triple Product
25(1)
2.5.2 β Value
25(1)
2.5.3 Current Drive Efficiency
25(1)
2.6 Operation Scenario
26(2)
2.6.1 Pulse Operation
26(1)
2.6.2 Quasi-steady-state Operation
27(1)
2.6.3 Steady-state Operation
28(1)
2.7 Stepwise Development Research of the Fusion Reactor
28(1)
2.7.1 Experimental Reactor
29(1)
2.7.2 Prototype Reactor
29(1)
2.7.3 Demonstration Reactor/Commercial Reactor
29(1)
References
29(2)
3 Basics of Plasma Analysis 31(26)
3.1 Boltzmann Equation
31(1)
3.2 Plasma Analysis
32(3)
3.2.1 Velocity Information
33(1)
3.2.2 Nonlinear Effects
33(1)
3.2.3 External Electromagnetic Field
33(1)
3.2.4 Numerical Simulation
33(1)
3.2.5 Main Plasma Theories
33(2)
3.3 Magnetohydrodynamic Equation
35(4)
3.3.1 Macroscopic Physical Quantity
35(2)
3.3.1.1 Momentum Flow Tensor P(r, t)
36(1)
3.3.1.2 Pressure Tensor p(r, t)
36(1)
3.3.1.3 Energy Density epsilon(r, t)
36(1)
3.3.1.4 Internal Energy Density U(r, t)
36(1)
3.3.1.5 Energy Flux Vector Q(r, t)
36(1)
3.3.2 Particle Number Conservation Law (Equation of Continuity)
37(1)
3.3.3 Momentum Conservation Law
38(1)
3.3.4 Energy Conservation Law
39(1)
3.4 Kinetic Equation
39(2)
3.5 Linearized Kinetic Analysis (One Dimension)
41(2)
3.6 Linearized Kinetic Analysis (Three Dimensions)
43(3)
3.7 Quasi-Linear Theory
46(3)
3.8 Turbulence Theory
49(4)
3.8.1 Weak Turbulence Theory
49(4)
3.8.1.1 Wave-Particle Interaction
51(1)
3.8.1.2 Wave-Wave (3 Waves) Interaction
52(1)
3.8.1.3 Nonlinear Wave-Particle Interaction
52(1)
3.8.1.4 Wave-Wave (4 Waves) Interaction
52(1)
3.8.2 Strong Turbulence Theory
53(1)
3.9 Neutron Transport Analysis
53(2)
3.9.1 Transport Equation
53(1)
3.9.2 Interaction Between Neutrons and Materials
54(1)
References
55(2)
4 Plasma Equilibrium and Stability 57(56)
4.1 Plasma Equilibrium
57(7)
4.1.1 Plasma Pressure
57(2)
4.1.2 Equilibrium Equation
59(2)
4.1.3 Tokamak Equilibrium
61(2)
4.1.4 Plasma Cross Section
63(1)
4.2 MHD Stability
64(7)
4.2.1 Energy Principle
64(4)
4.2.1.1 MHD Equation
64(2)
4.2.1.2 Linearized Ideal MHD Equation
66(1)
4.2.1.3 Energy Principle
67(1)
4.2.2 Energy Integral
68(1)
4.2.3 MHD Instability
69(1)
4.2.4 MHD Mode and Resonant Surface
69(2)
4.3 Plasma Positional Instability
71(3)
4.4 Kink Instability
74(3)
4.4.1 Characteristics
74(1)
4.4.2 Dispersion Relation
74(2)
4.4.3 Stabilization Method
76(1)
4.5 Interchange Instability
77(1)
4.6 Ballooning Instability
78(4)
4.6.1 Characteristics
78(1)
4.6.2 Energy Integral
79(2)
4.6.3 Stabilization Method
81(1)
4.7 Resistive Instability
82(8)
4.7.1 Tearing Mode
83(5)
4.7.1.1 Characteristics
83(1)
4.7.1.2 Basic Equations
84(1)
4.7.1.3 Magnetic Island Width
85(1)
4.7.1.4 Magnetic Island Evolution Equation
86(2)
4.7.1.5 Stabilization Method
88(1)
4.7.2 Neoclassical Tearing Mode
88(2)
4.7.2.1 Characteristics
88(1)
4.7.2.2 Difference in the Logarithmic Derivative Due to Bootstrap Current
89(1)
4.7.2.3 Magnetic Island Evolution Equation
89(1)
4.7.2.4 Stabilization Method
89(1)
4.8 Drift Instability
90(6)
4.8.1 Density Gradient
90(1)
4.8.2 Density Gradient and Temperature Gradient
90(2)
4.8.3 Resistive Drift Mode
92(3)
4.8.4 Influence of Drift Wave on Plasma Transport
95(1)
4.9 Resistive Wall Instability
96(2)
4.9.1 Characteristics
96(1)
4.9.2 Stabilization Method
97(1)
4.10 Instability Due to High Energy Particles
98(4)
4.10.1 Alfven Eigenmode
98(4)
4.10.1.1 Characteristics
98(1)
4.10.1.2 Dispersion Relation
99(1)
4.10.1.3 Instability Condition and Stabilization Method
100(2)
4.10.2 Fishbone Oscillation
102(1)
4.11 Sawtooth Oscillation
102(1)
4.12 Edge Localized Mode
102(1)
4.13 Locked Mode
103(1)
4.14 Future Challenges
103(1)
Appendix 4A
103(4)
Appendix 4B
107(4)
References
111(2)
5 Plasma Transport and Confinement 113(28)
5.1 Confinement Time
113(1)
5.2 Plasma Transport
114(5)
5.2.1 Diffusion by Collision
114(2)
5.2.2 Diffusion by Turbulence
116(3)
5.2.2.1 Bohm Diffusion
116(2)
5.2.2.2 Gyro-Bohm Diffusion
118(1)
5.2.2.3 Energy Confinement
119(1)
5.3 Scaling Law of Energy Confinement
119(5)
5.3.1 Parameter Dependence of Energy Confinement Time
119(1)
5.3.2 Scaling Law
120(2)
5.3.3 L-H Transition Threshold Power
122(1)
5.3.4 Improved Confinement Mode
122(2)
5.4 Edge Localized Mode
124(3)
5.4.1 Types of Edge Localized Mode
124(1)
5.4.2 Energy Released by ELM
125(2)
5.4.3 Measures Against ELM
127(1)
5.5 β Limit
127(2)
5.5.1 Plasma Current Profile
128(1)
5.5.2 Plasma Pressure Profile
128(1)
5.5.3 Shape of Plasma Cross Section
129(1)
5.5.4 Neoclassical Tearing Mode
129(1)
5.6 Density Limit
129(1)
5.7 Confinement of High-Energy Particles
129(1)
5.8 Disruption
130(7)
5.8.1 Plasma Behavior in Disruption and Cause of the Occurrence
131(2)
5.8.1.1 Plasma Behavior
131(2)
5.8.1.2 Causes of Disruption
133(1)
5.8.2 Effect on Equipment
133(2)
5.8.2.1 Thermal Load
133(1)
5.8.2.2 Electromagnetic Force
134(1)
5.8.3 Countermeasures Against Disruption
135(2)
5.9 Future Challenges
137(1)
References
137(4)
6 Plasma Design 141(16)
6.1 Particle and Energy Balances of Plasma (One Dimension)
141(4)
6.1.1 Thermal Conduction Loss Power
143(1)
6.1.2 Convection Loss Power
143(1)
6.1.3 α Heating Power
143(1)
6.1.4 Additional Heating Power
144(1)
6.1.5 Joule (Ohmic) Heating Power
144(1)
6.1.6 Electron-Ion Energy Transfer
144(1)
6.1.7 Radiation Loss Power
145(1)
6.2 Particle and Energy Balances of Plasma (Zero Dimension)
145(3)
6.2.1 Zero-Dimensional Particle and Energy Balances
145(1)
6.2.2 Plasma Temperature and Density in Steady-State Operation
146(2)
6.3 Burn-Up Fraction
148(2)
6.4 Plasma Circuit
150(2)
6.5 Reactor Structure
152(3)
6.5.1 Radial Build
152(1)
6.5.2 Magnetic Flux Required for Operation
153(1)
6.5.3 Magnetic Flux to Be Supplied
154(1)
6.6 Future Challenges
155(1)
References
156(1)
7 Blanket 157(34)
7.1 Functions Required for the Blanket
157(1)
7.2 Tritium Production
157(8)
7.2.1 Necessity of Tritium Production
157(2)
7.2.2 Tritium Breeding Ratio
159(1)
7.2.3 Tritium Doubling Time
159(1)
7.2.4 Improvement of Tritium Breeding Ratio
160(5)
7.2.4.1 6Li(n, T)α Reaction Cross Section
161(1)
7.2.4.2 7Li(n, n' T)αa Reaction Cross Section
161(1)
7.2.4.3 Tritium Breeding Material
161(2)
7.2.4.4 Neutron Flux
163(1)
7.2.4.5 Blanket Coverage
164(1)
7.2.5 Recovery of Tritium
165(1)
7.3 Taking Out of Thermal Energy
165(10)
7.3.1 Energy Multiplication Factor of the Blanket
165(1)
7.3.2 Power Generation Efficiency and Coolant Temperature
166(2)
7.3.2.1 Temperature of Breeder and Multiplier Materials
166(1)
7.3.2.2 Temperature of the Blanket Structural Material
167(1)
7.3.2.3 Coolant
167(1)
7.3.3 Temperature Profile
168(2)
7.3.4 Power Generation Method
170(5)
7.3.4.1 Power Generation Methods of Fission Reactor and Thermal Power Plant
171(1)
7.3.4.2 Characteristics of Fusion Power Generation
172(1)
7.3.4.3 Combination of Coolants
173(2)
7.3.4.4 Fusion Power Generation
175(1)
7.4 Radiation Shielding Function
175(1)
7.4.1 Blanket Thickness
175(1)
7.4.2 Low Radioactivation
176(1)
7.5 Maintenance
176(5)
7.5.1 Extension of Life
176(3)
7.5.1.1 Wear Amount of Lithium by Burning of Tritium Breeding Material
177(1)
7.5.1.2 Wear Amount of Beryllium by Burning of Neutron Multiplier Material
178(1)
7.5.1.3 Wear Amount of First Wall
179(1)
7.5.1.4 Nuclear Damage Due to Displacement Damage, Hydrogen and Helium Productions, Swelling, etc.
179(1)
7.5.1.5 Change in Thermal Life of Structural Materials Due to Cycle Thermal Fatigue
179(1)
7.5.2 Maintenance Method
179(2)
7.5.2.1 Wear Amount and Replacement Frequency
179(1)
7.5.2.2 Remote Maintenance Method
180(1)
7.6 Blanket Design
181(6)
7.6.1 Blanket Classification
181(1)
7.6.2 Design Conditions
181(1)
7.6.3 Blanket Concept
181(4)
7.6.3.1 Blanket Configuration
181(2)
7.6.3.2 Size of a Blanket
183(2)
7.6.4 Design Example
185(2)
7.7 Future Challenges
187(2)
References
189(2)
8 Plasma-Facing Components 191(36)
8.1 Functions Required for Plasma-Facing Components
191(2)
8.1.1 Required Functions
191(1)
8.1.1.1 Impurity Control
191(1)
8.1.1.2 Plasma Particle Control
191(1)
8.1.1.3 Thermal Treatment of Plasma Thermal Energy
192(1)
8.1.2 Limiter and Divertor
192(1)
8.2 Divertor Characteristics (in Steady State)
193(8)
8.2.1 Basic Characteristics of Divertor Plasma
193(1)
8.2.2 Two-Point Model
194(2)
8.2.3 Attached State and Detached State
196(1)
8.2.4 Two-Dimensional Divertor Analysis Model
197(3)
8.2.5 Measures for Reducing Particle and Thermal Loads
200(1)
8.2.5.1 Impurity Control
200(1)
8.2.5.2 Particle Control
200(1)
8.2.5.3 Average Heat Flux to the Divertor Plate
200(1)
8.3 Divertor Characteristics (in Non-steady State)
201(2)
8.3.1 ELM
201(1)
8.3.2 Disruption
202(1)
8.3.2.1 Thermal Load
202(1)
8.3.2.2 Electromagnetic Force
203(1)
8.4 Structures of Limiter and Divertor
203(5)
8.4.1 Shape and Type of Limiter and Divertor
203(3)
8.4.1.1 Trends in Impurity Control Research
203(1)
8.4.1.2 Limiter and Pumped Limiter
204(1)
8.4.1.3 Divertor
204(1)
8.4.1.4 Comparison of Pumped Limiter and Divertor
205(1)
8.4.2 Comparison of Single Null Divertor and Double Null Divertor
206(1)
8.4.3 Shape of Divertor
206(2)
8.5 Divertor Design
208(9)
8.5.1 Design Conditions and Design Items
208(2)
8.5.2 Material Selection
210(2)
8.5.3 Structural Concept
212(2)
8.5.3.1 Heat Receiving Plate Structure
212(1)
8.5.3.2 Eddy Current Suppression Structure
213(1)
8.5.3.3 Reduction of Stress and Strain
213(1)
8.5.3.4 Cooling Tube
213(1)
8.5.4 Design Example
214(3)
8.6 First Wall
217(5)
8.6.1 Particle Load and Thermal Load
217(1)
8.6.2 First-Wall Structure
218(2)
8.6.2.1 Overall Structure
218(1)
8.6.2.2 Protection Structure
218(1)
8.6.2.3 Flow Path Cross Section
218(2)
8.6.2.4 Amount of Wear
220(1)
8.6.3 Design Example
220(2)
8.7 Future Challenges
222(1)
References
222(5)
9 Coil System 227(46)
9.1 Fusion Reactor Coils
227(1)
9.1.1 Types of Coils
227(1)
9.1.2 Necessity of Superconducting Coil
227(1)
9.2 Basics of Superconducting Coils
228(10)
9.2.1 Characteristics of Superconductivity
228(1)
9.2.2 Superconducting Materials
228(1)
9.2.3 Manufacturing Methods for Superconducting Wires
229(2)
9.2.3.1 NbTi
229(1)
9.2.3.2 Nb3Sn
230(1)
9.2.3.3 Nb3Al
230(1)
9.2.3.4 MgB2
231(1)
9.2.3.5 Bismuth-Based Oxide
231(1)
9.2.3.6 Yttrium-Based Oxide
231(1)
9.2.4 Superconducting Wires
231(1)
9.2.4.1 Hysteresis Loss
231(1)
9.2.4.2 Stabilizing Materials (Stabilizers)
232(1)
9.2.4.3 Twist
232(1)
9.2.4.4 Cooling Performance
232(1)
9.2.5 Thermal Load and Cooling Methods
232(2)
9.2.5.1 Thermal Load
232(1)
9.2.5.2 Cooling Methods
233(1)
9.2.6 Conductor Structure
234(3)
9.2.6.1 Critical Current
235(1)
9.2.6.2 Limited Current
236(1)
9.2.6.3 Stability Margin
236(1)
9.2.6.4 Coil Average Current Density
237(1)
9.2.6.5 Conductor Design
237(1)
9.2.7 Coil Structure
237(1)
9.2.7.1 Structure
237(1)
9.2.7.2 Structural Material
238(1)
9.3 Basics of Toroidal Magnetic Field Coil
238(7)
9.3.1 Functions for Toroidal Magnetic Field Coil
239(1)
9.3.2 Coil Current and Number of Coils
239(2)
9.3.2.1 Coil Current
239(1)
9.3.2.2 Number of Coils
239(2)
9.3.2.3 Stored Energy
241(1)
9.3.3 Electromagnetic Force Generated in Coil
241(1)
9.3.3.1 Extensional Force
241(1)
9.3.3.2 Centering Force
242(1)
9.3.3.3 Overturning Force
242(1)
9.3.4 Coil Shape
242(3)
9.3.4.1 Shape
242(1)
9.3.4.2 Three-Arc Approximation
243(2)
9.3.5 Maximum Magnetic Field
245(1)
9.4 Design of Toroidal Magnetic Field Coil
245(9)
9.4.1 Conductor Design
246(1)
9.4.1.1 Selection of Superconducting Material
246(1)
9.4.1.2 Cooling Method
246(1)
9.4.2 Design of Coil Structure
246(1)
9.4.2.1 Coil Structure
246(1)
9.4.2.2 Selection of Structural Materials
246(1)
9.4.3 Support Structure
247(2)
9.4.3.1 Support Structure for the Centering Force
247(2)
9.4.3.2 Support Structure for the Overturning Force
249(1)
9.4.3.3 Support Structure of Own Weight
249(1)
9.4.4 Design Example
249(5)
9.5 Basics of Poloidal Magnetic Field Coil
254(2)
9.5.1 Functions of Poloidal Magnetic Field Coil
254(1)
9.5.2 Waveform Pattern of Coil Current for Control of Plasma Position and Shape
255(1)
9.5.3 Position of Poloidal Magnetic Field Coil
256(1)
9.6 Current Control of Poloidal Magnetic Field Coil
256(7)
9.6.1 Magnetic Field Configuration to Determine the Plasma Shape
256(1)
9.6.2 Control of Plasma Position and Shape
257(1)
9.6.3 Generation Types of Poloidal Magnetic Field
258(1)
9.6.4 Function-Specific Coil System
259(1)
9.6.5 Hybrid Coil System
260(3)
9.6.5.1 Number of PF Coils
260(1)
9.6.5.2 Determining the PF Coil Position
260(1)
9.6.5.3 Determining the PF Coil Current
260(3)
9.7 Design of Poloidal Magnetic Field Coil
263(2)
9.7.1 Conductor Design
263(1)
9.7.1.1 Selection of Superconducting Material
263(1)
9.7.1.2 Cooling Method
263(1)
9.7.2 Design of Coil Structure
263(1)
9.7.2.1 Coil Structure
263(1)
9.7.2.2 Selection of Structural Materials
263(1)
9.7.2.3 Support Structure
264(1)
9.7.3 Design Example
264(1)
9.8 Basics of Central Solenoid Coil
265(2)
9.8.1 Functions of Central Solenoid Coil
265(1)
9.8.2 Magnetic Field of Central Solenoid Coil
266(1)
9.8.3 Supplied Magnetic Flux
266(1)
9.9 Design of Central Solenoid Coil
267(3)
9.9.1 Conductor Design
267(1)
9.9.1.1 Selection of Superconducting Material
267(1)
9.9.1.2 Cooling Method
268(1)
9.9.2 Design of Coil Structure
268(1)
9.9.2.1 Coil Structure
268(1)
9.9.2.2 Selection of Structural Materials
268(1)
9.9.2.3 Support Structure
268(1)
9.9.3 Design Example
268(2)
9.10 Future Challenges
270(1)
References
271(2)
10 Plasma Heating and Current Drive 273(112)
10.1 Necessity of Plasma Heating and Current Drive
273(2)
10.1.1 Plasma Heating
273(1)
10.1.2 Current Drive
274(1)
10.2 Basics of NBI Heating
275(6)
10.2.1 Ionization of Neutral Particle Beam
275(1)
10.2.2 Trajectory of Ion Beam
276(3)
10.2.2.1 Direction of Injection
276(1)
10.2.2.2 Trapped Condition
277(1)
10.2.2.3 Trajectory of Beam Ion
278(1)
10.2.3 Plasma Heating by Energy Relaxation
279(2)
10.3 Basics of NBI Current Drive
281(4)
10.3.1 Driven Current
281(1)
10.3.2 Current Drive Efficiency
282(2)
10.3.3 Shine Through Rate
284(1)
10.3.4 Current Drive Efficiency Obtained by Experiments
284(1)
10.4 Bootstrap Current
285(2)
10.4.1 Trapped Electron Orbit and Bootstrap Current
285(1)
10.4.2 Ratio of the Bootstrap Current
286(1)
10.5 Basics of Radio Frequency Heating
287(14)
10.5.1 Dispersion Relation
287(1)
10.5.2 Dispersion Relation of Cold Plasma
288(1)
10.5.3 Dispersion Relation of Hot Plasma
289(1)
10.5.4 Dispersion Relation of Plasma with Maxwell Distribution
290(1)
10.5.5 Characteristics of RF Waves
291(2)
10.5.5.1 Phase Velocity and Group Velocity
291(1)
10.5.5.2 Cutoff and Resonance
292(1)
10.5.5.3 Polarization
292(1)
10.5.6 Propagation Characteristics of RF Waves
293(4)
10.5.6.1 When the Wave Number Vector is Parallel to the Magnetic Field
294(2)
10.5.6.2 When the Wave Number Vector is Perpendicular to the Magnetic Field
296(1)
10.5.7 Principles of Plasma Heating
297(3)
10.5.7.1 Landau Damping
298(1)
10.5.7.2 Transit Time Damping
298(1)
10.5.7.3 Cyclotron Damping
299(1)
10.5.7.4 Absorption Power
299(1)
10.5.8 Propagation in Nonuniform Plasma
300(1)
10.6 Various RF Waves
301(12)
10.6.1 Alfven Wave
301(2)
10.6.2 Ion Cyclotron Wave
303(4)
10.6.2.1 Right-handed Cut Off and Left-handed Cut Off
304(1)
10.6.2.2 Density at Which the Wave can Propagate
305(1)
10.6.2.3 Characteristics of the Slow Wave
305(1)
10.6.2.4 Characteristics of the Fast Wave
305(2)
10.6.3 Lower Hybrid Wave
307(3)
10.6.3.1 Resonance and Cut Off
307(2)
10.6.3.2 Accessibility Condition
309(1)
10.6.4 Electron Cyclotron Wave
310(3)
10.6.4.1 Absorption Power
311(1)
10.6.4.2 Resonance and Cut Off
311(1)
10.6.4.3 Propagation Path
311(2)
10.7 Basics of RF Current Drive
313(17)
10.7.1 General Theory of RF Current Drive
313(3)
10.7.1.1 Various Noninductive Current Drive Methods
313(1)
10.7.1.2 Normalized Current Drive Efficiency
314(1)
10.7.1.3 Current Drive Using Momentum of the Wave
315(1)
10.7.1.4 Current Drive Using Anisotropy of the Velocity Space
316(1)
10.7.1.5 Current Drive Efficiency
316(1)
10.7.2 Current Drive Using Momentum of the Wave
316(5)
10.7.2.1 Fokker-Planck Equation in One and Two Dimensions
316(2)
10.7.2.2 Driven Current Density and Current Drive Power Density
318(1)
10.7.2.3 LHCD (One-Dimensional Analysis)
318(1)
10.7.2.4 DC Electric Field
318(2)
10.7.2.5 LHCD (Two-Dimensional Analysis)
320(1)
10.7.3 Current Drive with Anisotropy of the Velocity Space
321(6)
10.7.3.1 Two-Dimensional Fokker-Planck Equation
321(2)
10.7.3.2 Relativistic Effect
323(1)
10.7.3.3 Trapped Effect
324(3)
10.7.4 Current Drive Efficiency Obtained by Experiments
327(3)
10.7.4.1 Fast Wave Current Drive (FWCD)
327(1)
10.7.4.2 LHCD
328(1)
10.7.4.3 ECCD
329(1)
10.8 NBI System Design
330(7)
10.8.1 Design Requirements
330(1)
10.8.1.1 Required Functions
330(1)
10.8.1.2 Design Requirements
330(1)
10.8.1.3 System Efficiency
330(1)
10.8.2 System Configuration
331(1)
10.8.2.1 Positive-ion NBI
331(1)
10.8.2.2 Negative-ion NBI
332(1)
10.8.3 Negative-ion Source
332(2)
10.8.3.1 Negative-ion Generator
332(2)
10.8.3.2 Accelerator
334(1)
10.8.4 Beam Transport System
334(1)
10.8.4.1 Beam Profile Control Unit
334(1)
10.8.4.2 Neutralization Cell (Neutralizer)
334(1)
10.8.4.3 Residual Ion Bending Magnet and Residual Ion Dump
335(1)
10.8.4.4 Vacuum Exhaust System
335(1)
10.8.5 Design Example
335(1)
10.8.6 Future Challenges
336(1)
10.9 System Design of the Ion Cyclotron Wave
337(5)
10.9.1 Design Requirements
337(2)
10.9.1.1 Required Functions
337(1)
10.9.1.2 ICRF Excitation Method
338(1)
10.9.1.3 System Efficiency
338(1)
10.9.2 System Configuration
339(1)
10.9.2.1 RF Source
339(1)
10.9.2.2 Transmission System
339(1)
10.9.2.3 Injection System
340(1)
10.9.3 Design Example
340(2)
10.9.4 Future Challenges
342(1)
10.10 System Design of the Lower Hybrid Wave
342(8)
10.10.1 Design Requirements
342(2)
10.10.1.1 Required Functions
342(1)
10.10.1.2 LHW Excitation Method
343(1)
10.10.1.3 Plasma Density in Front of the Launcher
344(1)
10.10.1.4 System Efficiency
344(1)
10.10.2 System Configuration
344(4)
10.10.2.1 RF Source
345(1)
10.10.2.2 Transmission System
345(1)
10.10.2.3 Injection System (Launcher)
346(1)
10.10.2.4 Phase Shifter
347(1)
10.10.3 Design Example
348(2)
10.10.4 Future Challenges
350(1)
10.11 System Design of the Electron Cyclotron Wave
350(8)
10.11.1 Design Requirements
350(3)
10.11.1.1 Required Functions
350(1)
10.11.1.2 ECW Excitation Method
351(1)
10.11.1.3 System Efficiency
352(1)
10.11.2 System Configuration
353(3)
10.11.2.1 Various System Configurations
353(1)
10.11.2.2 RF Source
354(1)
10.11.2.3 Transmission System
355(1)
10.11.2.4 Injection System (Launcher)
355(1)
10.11.3 Design Example
356(1)
10.11.4 Future Challenges
357(1)
Appendix 10A
358(5)
Appendix 10B
363(6)
Appendix 10C
369(4)
Appendix 10D
373(4)
Appendix 10E
377(3)
References
380(5)
11 Vacuum Vessel 385(20)
11.1 Functions Required for Vacuum Vessel
385(1)
11.2 Holding Ultra-High Vacuum and High-Temperature Baking
385(2)
11.2.1 Degree of Vacuum in the Vacuum Vessel
385(1)
11.2.2 Holding the Ultra-high Vacuum
386(1)
11.2.3 High-Temperature Baking
387(1)
11.3 Ensuring Electrical Resistance, Plasma Position Control, and Toroidal Field Ripple
387(5)
11.3.1 Electrical Resistance of the Vacuum Vessel
387(3)
11.3.2 Ensuring Electrical Resistance
390(1)
11.3.3 Plasma Position Control
391(1)
11.3.4 Toroidal Field Ripple
391(1)
11.4 Supporting the Electromagnetic Force and In-Vessel Equipment
392(2)
11.4.1 Supporting the Electromagnetic Force
392(1)
11.4.2 Supporting the Vacuum Vessel
392(2)
11.5 Cooling Performance, Radiation Shielding, Confinement, Assembly, and Maintenance
394(2)
11.5.1 Cooling Performance
394(1)
11.5.2 Radiation Shielding
394(1)
11.5.3 Confinement of Radioactive Material
394(1)
11.5.4 Assembly and Maintenance
395(1)
11.5.4.1 Assembly
395(1)
11.5.4.2 Maintenance
395(1)
11.6 Design of Vacuum Vessel
396(6)
11.6.1 Structural Standard
396(1)
11.6.2 Design Items
396(2)
11.6.3 Design Example
398(9)
11.6.3.1 Holding Ultra-high Vacuum
398(1)
11.6.3.2 Surface Cleaning System
399(1)
11.6.3.3 Ensuring Electrical Resistance, Plasma Position Control, and Toroidal Field Ripple
400(1)
11.6.3.4 Supporting Electromagnetic Force and In-vessel Equipment
400(1)
11.6.3.5 Cooling of Vacuum Vessel, Radiation Shielding, and Confinement
400(1)
11.6.3.6 Assembly
401(1)
11.6.3.7 Maintenance
401(1)
11.7 Future Challenges
402(1)
References
402(3)
12 Fuel Cycle System 405(20)
12.1 Functions Required for the Fuel Cycle System
405(1)
12.2 Configuration of the Fuel Cycle System
405(2)
12.3 Fueling System
407(1)
12.3.1 Fueling Method
407(1)
12.3.2 Fueling Amount
407(1)
12.4 Gas Exhaust System
408(6)
12.4.1 Exhaust Gases by Source
408(1)
12.4.2 Plasma Vacuum Exhaust System
408(6)
12.4.2.1 Types of Vacuum Exhaust Pump
408(1)
12.4.2.2 Configuration
409(1)
12.4.2.3 Initial Ultimate Pressure
409(2)
12.4.2.4 Helium Pumping Speed
411(1)
12.4.2.5 Cryopanel Area
412(1)
12.4.2.6 Helium Accumulation on the Cryopanel
412(1)
12.4.2.7 Exhaust Time
413(1)
12.5 Fuel Clean-up System
414(2)
12.5.1 Kinds of Recovered Gas and Amount of Exhaust Gas
414(1)
12.5.2 Configuration of the Fuel Clean-Up System
414(2)
12.6 Hydrogen Isotope Separation System
416(2)
12.7 Atmosphere Detritiation System
418(1)
12.8 Water Detritiation System
418(1)
12.9 Fuel Storage System
419(1)
12.10 Material Accountancy of Tritium
420(1)
12.11 Design Example
420(3)
12.11.1 Fuel Cycle System
420(1)
12.11.2 Fueling System
421(1)
12.11.3 Tokamak Exhaust Processing System
422(1)
12.11.4 Hydrogen Isotope Separation System
422(1)
12.11.5 Atmosphere Detritiation System
422(1)
12.11.6 Water Detritiation System
423(1)
12.11.7 Fuel Storage System
423(1)
12.12 Future Challenges
423(1)
References
424(1)
13 Cryostat 425(10)
13.1 Functions of Cryostat
425(1)
13.2 Cryostat Structure
425(1)
13.3 Thermal Shield
425(4)
13.3.1 Design Requirements
427(1)
13.3.2 Structure
428(1)
13.4 Design Example
429(3)
13.5 Future Challenges
432(1)
References
433(2)
14 Nuclear Design 435(22)
14.1 Items Required for Nuclear Design
435(2)
14.2 Radiation Shielding
437(4)
14.2.1 Main Shield
437(3)
14.2.1.1 Equipment Shielding and Biological Shielding
437(1)
14.2.1.2 Installation Position of Shields
438(1)
14.2.1.3 Activation of Air and Cooling Water
439(1)
14.2.2 Evaluation Method of Radiation Shielding
440(2)
14.2.2.1 Intensity of Neutron Source
440(1)
14.2.2.2 Nuclear Data
440(1)
14.2.2.3 Analysis Code
440(1)
14.2.2.4 Analysis Procedure
440(1)
14.3 Dose Rate
441(1)
14.4 Nuclear Heating
441(1)
14.5 Radiation Damage
442(5)
14.5.1 Surface Damage
442(2)
14.5.1.1 Sputtering
442(2)
14.5.1.2 Blistering
444(1)
14.5.2 Bulk Damage
444(4)
14.5.2.1 Displacement Damage
444(1)
14.5.2.2 Damage Due to Nuclear Transmutation
445(2)
14.6 Radioactive Waste
447(1)
14.7 Design Example
448(5)
14.7.1 Neutron Flux
449(1)
14.7.2 dpa Distribution
449(1)
14.7.3 Helium Production
450(1)
14.7.4 Dose Rate
450(2)
14.7.5 Dose Rate by Skyshine
452(1)
14.7.6 Nuclear Heating and So on
452(1)
14.8 Future Challenges
453(1)
References
453(4)
15 Operation and Maintenance 457(16)
15.1 Functions Required for Operation and Maintenance
457(1)
15.1.1 High Plant Availability
457(1)
15.1.2 Maintenance Method Consistent with the Reactor Structure
457(1)
15.1.3 Remote Maintenance with High Efficiency and High Reliability
458(1)
15.2 Operation Period
458(1)
15.3 Equipment to be Inspected and Maintained
459(2)
15.4 Frequency of Maintenance
461(1)
15.5 Remote Maintenance Methods
461(2)
15.6 Process of Remote Maintenance
463(2)
15.7 In-Vessel Transport System
465(1)
15.8 Design Example
466(4)
15.8.1 Frequency of Maintenance and Maintenance Period
466(1)
15.8.2 In-Vessel Transport System
466(2)
15.8.2.1 Maintenance of Blanket Module
466(1)
15.8.2.2 Maintenance of Divertor
467(1)
15.8.3 Ex-Vessel Transport System
468(1)
15.8.4 Piping Cutting/Welding Tool
469(1)
15.8.5 Failure of Maintenance Device
469(1)
15.8.6 Hot Cell Building
469(1)
15.9 Future Challenges
470(1)
References
471(2)
16 Cooling System 473(10)
16.1 Functions of Cooling System
473(1)
16.2 Configuration of Cooling System
473(3)
16.2.1 Operation Mode
473(1)
16.2.2 Cooling Method
474(1)
16.2.3 Heat Reservoir
474(2)
16.3 Cooling Performance
476(2)
16.4 Design Example
478(2)
16.4.1 Configuration of Cooling System
478(2)
16.4.1.1 Tokamak Cooling Water System
478(1)
16.4.1.2 Component Cooling Water System
479(1)
16.4.1.3 Chilled Water System
480(1)
16.4.1.4 Heat Rejection System
480(1)
16.4.2 Decay Heat Removal in Emergency
480(3)
16.4.2.1 Emergency Power Supply
480(1)
16.4.2.2 Natural Circulation Mode
480(1)
16.5 Future Challenges
480(1)
References
481(2)
17 Power Supply System 483(18)
17.1 Functions Required for the Power Supply System
483(1)
17.2 Characteristics of the Power Supply System
483(6)
17.2.1 Power Supply Capacity
483(1)
17.2.2 Equipment and Facilities to Which Power Is Supplied
484(1)
17.2.3 Technologies to Reduce Coil Power Supply Capacity
485(3)
17.2.3.1 Hybrid Coil System
485(1)
17.2.3.2 Superconductivity
485(1)
17.2.3.3 Steady-state Operation
486(2)
17.2.4 Configuration of Power Supply
488(1)
17.3 Power Supply for Toroidal Magnetic Field Coil
489(3)
17.3.1 Self-inductance
489(1)
17.3.2 Power Supply Voltage
490(1)
17.3.3 Stored Energy and Coil Protection
491(1)
17.3.4 Protection Resistor
491(1)
17.4 Power Supply for Poloidal Magnetic Field Coil
492(3)
17.4.1 Inductance
492(2)
17.4.1.1 Mutual Inductance
492(1)
17.4.1.2 Self-inductance of PF Coil
492(1)
17.4.1.3 Self-inductance of CS Coil
493(1)
17.4.2 Power Supply Voltage
494(1)
17.4.3 Power Supply Capacity
494(1)
17.4.4 Stored Energy
495(1)
17.4.5 Coil Protection
495(1)
17.4.5.1 At the Time of Quench
495(1)
17.4.5.2 At the Time of Plasma Disruption
495(1)
17.5 Design Example
495(3)
17.5.1 Coil Power Supply
496(1)
17.5.2 Power Supply of Plasma Heating and Current Drive System (H&CD)
497(1)
17.6 Future Challenges
498(1)
References
498(3)
18 Operation Control and Diagnostic Systems 501(38)
18.1 Functions of Operation Control and Diagnostic Systems
501(1)
18.2 Basics of Control
502(5)
18.2.1 Control Method
502(1)
18.2.2 Transfer Function
503(1)
18.2.3 Transient Response of a System
504(1)
18.2.4 Feedback Control
504(1)
18.2.5 PID Controller
505(2)
18.2.5.1 Ideal PID Controller
505(1)
18.2.5.2 Practical Noninterference-Type PID Controller
505(2)
18.3 Operation Control System
507(4)
18.3.1 Central Control System
507(1)
18.3.2 Plasma Control
507(4)
18.3.2.1 Control of Fusion Power
508(1)
18.3.2.2 MHD Control
509(1)
18.3.2.3 Disruption Control
509(2)
18.4 Diagnostic Systems
511(18)
18.4.1 Passive and Active Measurements
511(1)
18.4.2 Probe Measurement
512(2)
18.4.2.1 Electrostatic Probe
512(1)
18.4.2.2 Magnetic Probe, Magnetic Loop, and Rogowski Coil
513(1)
18.4.2.3 Diamagnetic Coil
513(1)
18.4.3 Electromagnetic Wave Measurement
514(8)
18.4.3.1 Passive Electromagnetic Wave Measurement
514(4)
18.4.3.2 Active Electromagnetic Wave Measurement
518(4)
18.4.4 Particle Measurement
522(7)
18.4.4.1 Passive Particle Measurement
522(6)
18.4.4.2 Active Particle Measurement
528(1)
18.5 Design Example
529(6)
18.5.1 Operation Control System
529(4)
18.5.1.1 Plant Control System
530(1)
18.5.1.2 Interlock Level
530(1)
18.5.1.3 Plasma Operation
531(2)
18.5.2 Diagnostic System
533(2)
18.6 Future Challenges
535(1)
References
536(3)
19 Safety 539(24)
19.1 Requirements for Safety
539(1)
19.2 Radioactive Materials
540(5)
19.2.1 Radioactivity
540(1)
19.2.2 Exposure Dose
541(1)
19.2.3 Absorbed Dose
541(1)
19.2.4 Dose Equivalent/Effective Dose Equivalent
541(1)
19.2.5 Equivalent Dose/Effective Dose
542(1)
19.2.6 Committed Effective Dose
543(1)
19.2.7 Tritium Concentration Limit
544(1)
19.2.8 Biological Hazard Potential
544(1)
19.3 How to Ensure Safety
545(6)
19.3.1 Safety Features
545(1)
19.3.2 Goal of the Safety
546(1)
19.3.2.1 In Normal Time
546(1)
19.3.2.2 In Emergency
547(1)
19.3.3 Basic Concept of Ensuring the Safety
547(1)
19.3.3.1 Basic Concept
547(1)
19.3.3.2 Implementation of Ensuring Safety
548(1)
19.3.4 Basic Concept of the Safety Design
548(2)
19.3.5 Evaluation of the Safety Design
550(1)
19.3.6 Waste Disposal
550(1)
19.4 Design Example
551(7)
19.4.1 Dose Limit
551(1)
19.4.2 Basic Concept of Ensuring the Safety
552(1)
19.4.3 Implementation of Ensuring the Safety
552(3)
19.4.3.1 Reduction of Radioactive Materials
552(1)
19.4.3.2 Confinement Barrier of Radioactive Materials
552(1)
19.4.3.3 Energy That Damages the Confinement Barriers
553(2)
19.4.3.4 Zoning Management
555(1)
19.4.4 Safety Design
555(1)
19.4.5 Event Analysis
556(7)
19.4.5.1 Events for Analysis
556(2)
19.4.5.2 Safety Analysis Code
558(1)
19.5 Future Challenges
558(2)
References
560(3)
20 Analysis Code 563(30)
20.1 How to Design
563(3)
20.1.1 Design Flow
563(1)
20.1.2 Flow of Reactor Design
563(3)
20.1.2.1 Requirements as Power Reactor
564(1)
20.1.2.2 Construction of Reactor Concept
564(1)
20.1.2.3 Clarification of Constraints
565(1)
20.1.2.4 Plasma Design
565(1)
20.1.2.5 Design of Reactor Structure
566(1)
20.1.2.6 Plant Design, Safety, and Economic Evaluations
566(1)
20.2 Various Types of Analysis Codes
566(1)
20.2.1 Plasma Analysis Code
566(1)
20.2.2 Equipment Analysis/Design Code
567(1)
20.2.3 Safety Analysis Code
567(1)
20.2.4 Detailed Analysis Code
567(1)
20.3 Reactor Design System Code
567(3)
20.3.1 Role of the Code
567(1)
20.3.2 Various System Codes
568(2)
20.4 System Code for Reactor Conceptual Design
570(9)
20.4.1 Power Balance (Energy Balance per Unit Time)
570(1)
20.4.2 Radial Build
571(1)
20.4.3 Volt-Second
572(1)
20.4.4 Shape of TF Coil
573(1)
20.4.5 Electromagnetic Force Acting on the TF Coil
573(2)
20.4.5.1 Tensile Stress Due to Vertical Force
574(1)
20.4.5.2 Bending Stress Due to Centering Force
575(1)
20.4.5.3 Bending Stress Due to Overturning Force
575(1)
20.4.6 Bucking Cylinder
575(2)
20.4.7 Radiation Shield
577(1)
20.4.8 Vertical Build
577(1)
20.4.9 Power Supply Capacity
578(1)
20.4.9.1 TF Coil
578(1)
20.4.9.2 PF Coil
578(1)
20.5 System Codes for Economic Evaluation
579(3)
20.5.1 Cost of Electricity
579(1)
20.5.2 Initial Capitalized Investment
580(1)
20.5.3 Direct Cost of Construction
580(1)
20.5.4 Annual Cost of Component Replacement at Specific Intervals
581(1)
20.5.5 Annual Cost of Operation and Maintenance
581(1)
20.5.6 Annual Fuel Cost and Annual Cost of Waste Disposal and Decommissioning
581(1)
20.6 System Codes for Plasma Dynamics Evaluation
582(8)
20.6.1 Particle Balance and Energy Balance
582(2)
20.6.1.1 Particle Balance Equation
582(1)
20.6.1.2 Energy Balance Equations
583(1)
20.6.2 β Limit
584(1)
20.6.3 Density Limit
584(1)
20.6.4 Thermal Load on Plasma-Facing Wall
585(1)
20.6.5 Distribution of Nuclear Heating Rate
586(1)
2Q.6.6 Impurity Contamination Model in Plasma
586(1)
20.6.7 Heat Transfer Model of Reactor Structure
587(1)
20.6.8 Analysis Example
588(2)
20.7 Future Challenges
590(1)
References
590(3)
Index 593
Takashi Okazaki, PhD, worked in the Energy Research Laboratory of Hitachi Ltd for more than 35 years. He was also Director of the Japanese Society of Plasma Science and Nuclear Fusion Research and a Visiting Associate Professor at Kyushu University, Fukuoka, Japan.