Foreword |
|
xv | |
Acknowledgments |
|
xvii | |
1 GaN Technology Overview |
|
1 | (24) |
|
1.1 Silicon Power Metal Oxide Silicon Field Effect Transistors 1976-2010 |
|
|
1 | (1) |
|
1.2 The Gallium Nitride Journey Begins |
|
|
2 | (1) |
|
1.3 GaN and SiC Compared with Silicon |
|
|
2 | (4) |
|
|
3 | (1) |
|
1.3.2 Critical Field (Ecrit) |
|
|
3 | (1) |
|
1.3.3 On-Resistance (RDs(on)) |
|
|
4 | (1) |
|
1.3.4 The Two-Dimensional Electron Gas (2DEG) |
|
|
4 | (2) |
|
1.4 The Basic GaN Transistor Structure |
|
|
6 | (5) |
|
1.4.1 Recessed Gate Enhancement-Mode Structure |
|
|
7 | (1) |
|
1.4.2 Implanted Gate Enhancement-Mode Structure |
|
|
8 | (1) |
|
1.4.3 pGaN Gate Enhancement-Mode Structure |
|
|
8 | (1) |
|
1.4.4 Hybrid Normally Off Structures |
|
|
8 | (2) |
|
1.4.5 Reverse Conduction in HEMT Transistors |
|
|
10 | (1) |
|
1.5 Building a GaN Transistor |
|
|
11 | (4) |
|
1.5.1 Substrate Material Selection |
|
|
11 | (1) |
|
1.5.2 Growing the Heteroepitaxy |
|
|
12 | (1) |
|
1.5.3 Processing the Wafer |
|
|
12 | (1) |
|
1.5.4 Making Electrical Connection to the Outside World |
|
|
13 | (2) |
|
1.6 GaN Integrated Circuits |
|
|
15 | (6) |
|
|
21 | (1) |
|
|
21 | (4) |
2 GaN Transistor Electrical Characteristics |
|
25 | (16) |
|
|
25 | (1) |
|
|
25 | (5) |
|
2.2.1 Drain-Source Voltage |
|
|
25 | (5) |
|
2.3 On-Resistance (RDs(on)) |
|
|
30 | (3) |
|
|
33 | (1) |
|
2.5 Capacitance and Charge |
|
|
34 | (3) |
|
|
37 | (2) |
|
|
39 | (1) |
|
|
40 | (1) |
3 Driving GaN Transistors |
|
41 | (28) |
|
|
41 | (3) |
|
|
44 | (1) |
|
3.3 Gate Drive Resistance |
|
|
45 | (1) |
|
3.4 Capacitive Current-Mode Gate Drive Circuits for Gate Injection Transistors |
|
|
46 | (2) |
|
|
48 | (3) |
|
3.5.1 Controlling dv/dt at Turn-On |
|
|
48 | (1) |
|
3.5.2 Complementary Device Turn-On |
|
|
49 | (2) |
|
|
51 | (3) |
|
3.6.1 Device Turn-On and Common-Source Inductance |
|
|
51 | (2) |
|
3.6.2 Off-State Device di/dt |
|
|
53 | (1) |
|
3.7 Bootstrapping and Floating Supplies |
|
|
54 | (3) |
|
|
57 | (2) |
|
3.9 High-Frequency Considerations |
|
|
59 | (1) |
|
3.10 Gate Drivers for Enhancement-Mode GaN Transistors |
|
|
60 | (1) |
|
3.11 Cascode, Direct-Drive, and Higher-Voltage Configurations |
|
|
60 | (4) |
|
|
60 | (3) |
|
3.11.2 Direct-Drive Devices |
|
|
63 | (1) |
|
3.11.3 Higher-Voltage Configurations |
|
|
64 | (1) |
|
|
64 | (1) |
|
|
65 | (4) |
4 Layout Considerations for GaN Transistor Circuits |
|
69 | (16) |
|
|
69 | (1) |
|
4.2 Minimizing Parasitic Inductance |
|
|
69 | (3) |
|
4.3 Conventional Power-Loop Designs |
|
|
72 | (2) |
|
4.3.1 Lateral Power-Loop Design |
|
|
72 | (1) |
|
4.3.2 Vertical Power-Loop Design |
|
|
73 | (1) |
|
4.4 Optimizing the Power Loop |
|
|
74 | (2) |
|
4.4.1 Impact of Integration on Parasitics |
|
|
75 | (1) |
|
4.5 Paralleling GaN Transistors |
|
|
76 | (7) |
|
4.5.1 Paralleling GaN Transistors for a Single Switch |
|
|
76 | (3) |
|
4.5.2 Paralleling GaN Transistors for Half-Bridge Applications |
|
|
79 | (4) |
|
|
83 | (1) |
|
|
83 | (2) |
5 Modeling and Measurement of GaN Transistors |
|
85 | (20) |
|
|
85 | (1) |
|
|
85 | (6) |
|
|
85 | (3) |
|
5.2.2 Limitations of Basic Modeling |
|
|
88 | (2) |
|
5.2.3 Limitations of Circuit Simulation |
|
|
90 | (1) |
|
5.3 Measuring GaN Transistor Performance |
|
|
91 | (10) |
|
5.3.1 Voltage Measurement Requirements |
|
|
94 | (2) |
|
5.3.2 Probing and Measurement Techniques |
|
|
96 | (3) |
|
5.3.3 Measuring Non-Ground-Referenced Signals |
|
|
99 | (1) |
|
5.3.4 Current Measurement Requirement |
|
|
100 | (1) |
|
|
101 | (1) |
|
|
102 | (3) |
6 Thermal Management |
|
105 | (26) |
|
|
105 | (1) |
|
6.2 Thermal Equivalent Circuits |
|
|
105 | (5) |
|
6.2.1 Thermal Resistances in a Lead Frame Package |
|
|
105 | (2) |
|
6.2.2 Thermal Resistances in a Chip-Scale Package |
|
|
107 | (1) |
|
6.2.3 Junction-to-Ambient Thermal Resistance |
|
|
108 | (1) |
|
6.2.4 Transient Thermal Impedance |
|
|
109 | (1) |
|
6.3 Improving Thermal Performance with a Heatsink |
|
|
110 | (4) |
|
6.3.1 Selection of Heatsink and Thermal Interface Material (TIM) |
|
|
111 | (1) |
|
6.3.2 Heatsink Attachment for Bottom-Side Cooling |
|
|
112 | (1) |
|
6.3.3 Heatsink Attachment for Multisided Cooling |
|
|
113 | (1) |
|
6.4 System-Level Thermal Analysis |
|
|
114 | (14) |
|
6.4.1 Thermal Model of a Power Stage with Discrete GaN Transistors |
|
|
115 | (2) |
|
6.4.2 Thermal Model of a Power Stage with a Monolithic GaN Integrated Circuit |
|
|
117 | (1) |
|
6.4.3 Thermal Model of a Multiphase System |
|
|
118 | (2) |
|
6.4.4 Temperature Measurement |
|
|
120 | (2) |
|
|
120 | (1) |
|
|
121 | (1) |
|
6.4.4.3 Temperature-Sensitive Electrical Parameter |
|
|
122 | (1) |
|
6.4.5 Experimental Characterization |
|
|
122 | (2) |
|
6.4.6 Application Examples |
|
|
124 | (4) |
|
|
128 | (1) |
|
|
128 | (3) |
7 Hard-Switching Topologies |
|
131 | (46) |
|
|
131 | (1) |
|
7.2 Hard-Switching Loss Analysis |
|
|
131 | (23) |
|
7.2.1 Hard-Switching Transitions with GaN Transistors |
|
|
132 | (3) |
|
7.2.2 Output Capacitance (COSS) Losses |
|
|
135 | (3) |
|
7.2.3 Turn-On Overlap Loss |
|
|
138 | (7) |
|
7.2.3.1 Current Rise Time |
|
|
139 | (3) |
|
7.2.3.2 Voltage Fall Time |
|
|
142 | (3) |
|
7.2.4 Turn-Off Overlap Losses |
|
|
145 | (2) |
|
7.2.4.1 Current Fall Time |
|
|
146 | (1) |
|
7.2.4.2 Voltage Rise Time |
|
|
147 | (1) |
|
7.2.5 Gate-Charge (QG) Losses |
|
|
147 | (1) |
|
7.2.6 Reverse Conduction Losses (PsD) |
|
|
147 | (6) |
|
7.2.6.1 Impact of Dead Time Selection on Reverse Conduction Loss |
|
|
147 | (3) |
|
7.2.6.2 Adding an Anti-Parallel Schottky Diode |
|
|
150 | (3) |
|
7.2.6.3 Dynamic COSS-Related Reverse Conduction Losses |
|
|
153 | (1) |
|
7.2.7 Reverse Recovery (QRR) Losses |
|
|
153 | (1) |
|
7.2.8 Hard-Switching Figure of Merit |
|
|
154 | (1) |
|
7.3 Impact of Parasitic Inductance on Hard-Switching Losses |
|
|
154 | (6) |
|
7.3.1 Impact of Common-Source Inductance (LCS) |
|
|
154 | (3) |
|
7.3.2 Impact of Power-Loop Inductance on Device Losses |
|
|
157 | (3) |
|
7.4 Frequency Impact on Magnetics |
|
|
160 | (2) |
|
|
160 | (1) |
|
|
161 | (1) |
|
7.5 Buck Converter Example |
|
|
162 | (12) |
|
7.5.1 Comparison with Experimental Measurements |
|
|
169 | (1) |
|
7.5.2 Consideration of Parasitic Inductance |
|
|
170 | (4) |
|
|
174 | (1) |
|
|
174 | (3) |
8 Resonant and Soft-Switching Converters |
|
177 | (24) |
|
|
177 | (1) |
|
8.2 Resonant and Soft-Switching Techniques |
|
|
177 | (5) |
|
8.2.1 Zero-Voltage and Zero-Current Switching |
|
|
177 | (2) |
|
8.2.2 Resonant DC-DC Converters |
|
|
179 | (1) |
|
8.2.3 Resonant Network Combinations |
|
|
179 | (1) |
|
8.2.4 Resonant Network Operating Principles |
|
|
180 | (1) |
|
8.2.5 Resonant Switching Cells |
|
|
181 | (1) |
|
8.2.6 Soft-Switching DC-DC Converters |
|
|
182 | (1) |
|
8.3 Key Device Parameters for Resonant and Soft-Switching Applications |
|
|
182 | (6) |
|
8.3.1 Output Charge (QOSS) |
|
|
182 | (1) |
|
8.3.2 Determining Output Charge from Manufacturers' Datasheets |
|
|
183 | (1) |
|
8.3.3 Comparing Output Charge of GaN Transistors and Si MOSFETs |
|
|
184 | (1) |
|
|
185 | (1) |
|
8.3.5 Determining Gate Charge for Resonant and Soft-Switching Applications |
|
|
186 | (1) |
|
8.3.6 Comparing Gate Charge of GaN Transistors and Si MOSFETs |
|
|
187 | (1) |
|
8.3.7 Comparing Performance Metrics of GaN Transistors and Si MOSFETs |
|
|
187 | (1) |
|
8.4 High-Frequency Resonant Bus Converter Example |
|
|
188 | (11) |
|
8.4.1 Resonant GaN and Si Bus Converter Designs |
|
|
191 | (1) |
|
8.4.2 GaN and Si Device Comparison |
|
|
191 | (2) |
|
8.4.3 Zero-Voltage Switching Transition |
|
|
193 | (2) |
|
8.4.4 Efficiency and Power Loss Comparison |
|
|
195 | (2) |
|
8.4.5 Impact of Further Device Improvements on Performance |
|
|
197 | (2) |
|
|
199 | (1) |
|
|
199 | (2) |
9 RF Performance |
|
201 | (22) |
|
|
201 | (1) |
|
9.2 Differences Between RF and Switching Transistors |
|
|
202 | (2) |
|
|
204 | (1) |
|
9.4 RF Transistor Metrics |
|
|
205 | (7) |
|
9.4.1 Determining the High-Frequency Characteristics of RF Transistors |
|
|
206 | (1) |
|
9.4.2 Pulse Testing for Thermal Considerations |
|
|
207 | (2) |
|
9.4.3 Analyzing the s-Parameters |
|
|
209 | (3) |
|
9.4.3.1 Test for Stability |
|
|
209 | (1) |
|
9.4.3.2 Transistor Input and Output Reflection |
|
|
210 | (1) |
|
|
211 | (1) |
|
9.4.3.4 Unilateral/Bilateral Transistor Test |
|
|
211 | (1) |
|
9.5 Amplifier Design Using Small-Signal s-Parameters |
|
|
212 | (2) |
|
9.5.1 Conditionally Stable Bilateral Transistor Amplifier Design |
|
|
213 | (1) |
|
|
213 | (1) |
|
9.5.1.2 Constant Available Gain Circles |
|
|
213 | (1) |
|
9.6 Amplifier Design Example |
|
|
214 | (7) |
|
9.6.1 Matching and Bias Tee Network Design |
|
|
216 | (3) |
|
9.6.2 Experimental Verification |
|
|
219 | (2) |
|
|
221 | (1) |
|
|
221 | (2) |
10 DC-DC Power Conversion |
|
223 | (28) |
|
|
223 | (1) |
|
10.2 Non-Isolated DC-DC Converters |
|
|
223 | (16) |
|
10.2.1 The 12 VIN-1.2 VOUT Buck Converter with Discrete Devices |
|
|
224 | (4) |
|
10.2.2 The 12 VIN-1 VOUT Monolithic Half-Bridge IC-Based Point-of-Load Module |
|
|
228 | (2) |
|
10.2.3 Very-High-Frequency 12 VIN Monolithic Half-Bridge IC-Based Point-of-Load Module |
|
|
230 | (3) |
|
10.2.4 The 28 VIN-3.3 VOUT Point-of-Load Module |
|
|
233 | (1) |
|
10.2.5 The 48 VIN-12 VouT Buck Converter with Parallel GaN Transistors for High-Current Applications |
|
|
233 | (6) |
|
10.3 Transformer-Based DC-DC Converters |
|
|
239 | (10) |
|
10.3.1 Eighth-Brick Converter Example |
|
|
239 | (4) |
|
10.3.2 High-Performance 48V Step-Down LLC DC Transformer |
|
|
243 | (8) |
|
10.3.2.1 Circuit Overview |
|
|
243 | (1) |
|
10.3.2.2 GaN Transistor Advantage in the LLC Converter |
|
|
244 | (1) |
|
10.3.2.3 A 1 MHz, 900W, 48 V-12 V LLC Example Using GaN Transistors |
|
|
245 | (3) |
|
10.3.2.4 A 1 MHz, 900W, 48 V-6 V LLC Example Using GaN Transistors |
|
|
248 | (1) |
|
|
249 | (1) |
|
|
250 | (1) |
11 Multilevel Converters |
|
251 | (18) |
|
|
251 | (1) |
|
11.2 Benefits of Multilevel Converters |
|
|
251 | (4) |
|
11.2.1 Applying Multilevel Converters to 48 V Applications |
|
|
252 | (2) |
|
11.2.2 Multilevel Converters for High-Voltage (400V) Applications |
|
|
254 | (1) |
|
11.3 Gate Driver Implementation |
|
|
255 | (1) |
|
11.4 Bootstrap Power Supply Solutions for GaN Transistors |
|
|
256 | (5) |
|
11.5 Multilevel Converters for PFC Applications |
|
|
261 | (2) |
|
11.6 Experimental Examples |
|
|
263 | (1) |
|
|
263 | (1) |
|
|
264 | (1) |
|
|
264 | (1) |
|
|
265 | (4) |
12 Class D Audio Amplifiers |
|
269 | (12) |
|
|
269 | (4) |
|
12.1.1 Total Harmonic Distortion |
|
|
271 | (1) |
|
12.1.2 Intermodulation Distortion |
|
|
272 | (1) |
|
12.2 GaN Transistor Class D Audio Amplifier Example |
|
|
273 | (5) |
|
12.2.1 Closed-Loop Amplifier |
|
|
274 | (2) |
|
12.2.2 Open-Loop Amplifier |
|
|
276 | (2) |
|
|
278 | (1) |
|
|
278 | (3) |
13 Lidar |
|
281 | (20) |
|
13.1 Introduction to Light Detection and Ranging (Lidar) |
|
|
281 | (1) |
|
13.2 Pulsed Laser Driver Overview |
|
|
281 | (7) |
|
13.2.1 Pulse Requirements |
|
|
282 | (2) |
|
13.2.2 Semiconductor Optical Sources |
|
|
284 | (1) |
|
13.2.3 Basic Driver Circuits |
|
|
285 | (1) |
|
13.2.4 Driver Switch Properties |
|
|
286 | (2) |
|
13.3 Basic Design Process |
|
|
288 | (2) |
|
13.3.1 Resonant Capacitive Discharge Laser Driver Design |
|
|
288 | (1) |
|
13.3.2 Quantitative Effect of Stray Inductance |
|
|
289 | (1) |
|
13.4 Hardware Driver Design |
|
|
290 | (1) |
|
13.5 Experimental Results |
|
|
291 | (3) |
|
13.5.1 High-Speed Laser Driver Design Example |
|
|
291 | (1) |
|
|
292 | (1) |
|
|
293 | (1) |
|
|
293 | (1) |
|
13.6 Other Considerations |
|
|
294 | (5) |
|
13.6.1 Resonant Capacitors |
|
|
294 | (1) |
|
|
295 | (1) |
|
|
295 | (1) |
|
|
296 | (1) |
|
|
297 | (2) |
|
|
299 | (1) |
|
|
299 | (2) |
14 Envelope Tracking |
|
301 | (14) |
|
|
301 | (1) |
|
14.2 High-Frequency GaN Transistors |
|
|
302 | (2) |
|
14.3 Topologies for Envelope Tracking Supplies |
|
|
304 | (3) |
|
14.3.1 Multiphase Converter |
|
|
305 | (1) |
|
14.3.2 Multilevel Converter |
|
|
306 | (1) |
|
|
307 | (1) |
|
14.5 Design Example: Tracking a 20 MHz LTE Envelope Signal |
|
|
308 | (3) |
|
|
311 | (1) |
|
|
311 | (4) |
15 Highly Resonant Wireless Power |
|
315 | (22) |
|
|
315 | (1) |
|
15.2 Overview of a Wireless Power System |
|
|
316 | (4) |
|
15.3 Amplifiers for Wireless Power Systems |
|
|
320 | (2) |
|
15.3.1 The Class E Amplifier |
|
|
320 | (1) |
|
15.3.2 ZVS Class D Amplifier |
|
|
321 | (1) |
|
15.4 Transistors Suitable for Wireless Power Amplifiers |
|
|
322 | (3) |
|
15.4.1 Figure of Merit for Wireless Power Amplifier Topologies |
|
|
322 | (1) |
|
15.4.2 GaN Transistors Evaluation in Wireless Power Applications |
|
|
323 | (2) |
|
15.5 Experimental Validation of GaN Transistor-Based Wireless Power Amplifiers |
|
|
325 | (9) |
|
15.5.1 Differential-Mode Class E Amplifier Example |
|
|
325 | (5) |
|
15.5.2 Differential-Mode ZVS Class D Amplifier Example |
|
|
330 | (4) |
|
|
334 | (1) |
|
|
334 | (3) |
16 GaN Transistors for Space Applications |
|
337 | (10) |
|
|
337 | (1) |
|
|
337 | (1) |
|
16.3 Standards for Radiation Exposure and Tolerance |
|
|
338 | (1) |
|
16.4 Gamma Radiation Tolerance |
|
|
338 | (2) |
|
|
340 | (1) |
|
16.6 Neutron Radiation (Displacement Damage) |
|
|
341 | (2) |
|
16.7 Performance Comparison Between GaN Transistors and Rad-Hard Si MOSFETs |
|
|
343 | (1) |
|
|
344 | (1) |
|
|
345 | (2) |
17 Replacing Silicon Power MOSFETs |
|
347 | (8) |
|
17.1 Introduction: What Controls the Rate of Adoption? |
|
|
347 | (1) |
|
17.2 New Capabilities Enabled by GaN Transistors |
|
|
347 | (2) |
|
17.3 GaN Transistors Are Easy to Use |
|
|
349 | (1) |
|
|
350 | (2) |
|
|
351 | (1) |
|
|
351 | (1) |
|
|
351 | (1) |
|
|
352 | (1) |
|
17.5 GaN Transistors Are Reliable |
|
|
352 | (1) |
|
17.6 Future Direction of GaN Transistors |
|
|
352 | (1) |
|
|
353 | (1) |
|
|
354 | (1) |
Appendix |
|
355 | (6) |
Index |
|
361 | |