Muutke küpsiste eelistusi

E-raamat: GaN Transistors for Efficient Power Conversion

(VPT, Inc., USA), (Efficient Power Conversion Corporation (EPC), USA), (Texas Instruments, USA), (Efficient Power Conversion Corporation (EPC), USA), (Efficient Power Conversion Corporation (EPC), USA)
  • Formaat: PDF+DRM
  • Ilmumisaeg: 23-Aug-2019
  • Kirjastus: John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9781119594376
  • Formaat - PDF+DRM
  • Hind: 120,97 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: PDF+DRM
  • Ilmumisaeg: 23-Aug-2019
  • Kirjastus: John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9781119594376

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

An up-to-date, practical guide on upgrading from silicon to GaN, and how to use GaN transistors in power conversion systems design 

This updated, third edition of a popular book on GaN transistors for efficient power conversion has been substantially expanded to keep students and practicing power conversion engineers ahead of the learning curve in GaN technology advancements. Acknowledging that GaN transistors are not one-to-one replacements for the current MOSFET technology, this book serves as a practical guide for understanding basic GaN transistor construction, characteristics, and applications. Included are discussions on the fundamental physics of these power semiconductors, layout, and other circuit design considerations, as well as specific application examples demonstrating design techniques when employing GaN devices.

GaN Transistors for Efficient Power Conversion, 3rd Edition brings key updates to the chapters of Driving GaN Transistors; Modeling, Simulation, and Measurement of GaN Transistors; DC-DC Power Conversion; Envelope Tracking; and Highly Resonant Wireless Energy Transfer. It also offers new chapters on Thermal Management, Multilevel Converters, and Lidar, and revises many others throughout. 

  • Written by leaders in the power semiconductor field and industry pioneers in GaN power transistor technology and applications
  • Updated with 35% new material, including three new chapters on Thermal Management, Multilevel Converters, Wireless Power, and Lidar
  • Features practical guidance on formulating specific circuit designs when constructing power conversion systems using GaN transistors
  • A valuable resource for professional engineers, systems designers, and electrical engineering students who need to fully understand the state-of-the-art

GaN Transistors for Efficient Power Conversion, 3rd Edition is an essential learning tool and reference guide that enables power conversion engineers to design energy-efficient, smaller, and more cost-effective products using GaN transistors. 

Foreword xv
Acknowledgments xvii
1 GaN Technology Overview 1(24)
1.1 Silicon Power Metal Oxide Silicon Field Effect Transistors 1976-2010
1(1)
1.2 The Gallium Nitride Journey Begins
2(1)
1.3 GaN and SiC Compared with Silicon
2(4)
1.3.1 Bandgap (Eg)
3(1)
1.3.2 Critical Field (Ecrit)
3(1)
1.3.3 On-Resistance (RDs(on))
4(1)
1.3.4 The Two-Dimensional Electron Gas (2DEG)
4(2)
1.4 The Basic GaN Transistor Structure
6(5)
1.4.1 Recessed Gate Enhancement-Mode Structure
7(1)
1.4.2 Implanted Gate Enhancement-Mode Structure
8(1)
1.4.3 pGaN Gate Enhancement-Mode Structure
8(1)
1.4.4 Hybrid Normally Off Structures
8(2)
1.4.5 Reverse Conduction in HEMT Transistors
10(1)
1.5 Building a GaN Transistor
11(4)
1.5.1 Substrate Material Selection
11(1)
1.5.2 Growing the Heteroepitaxy
12(1)
1.5.3 Processing the Wafer
12(1)
1.5.4 Making Electrical Connection to the Outside World
13(2)
1.6 GaN Integrated Circuits
15(6)
1.7 Summary
21(1)
References
21(4)
2 GaN Transistor Electrical Characteristics 25(16)
2.1 Introduction
25(1)
2.2 Device Ratings
25(5)
2.2.1 Drain-Source Voltage
25(5)
2.3 On-Resistance (RDs(on))
30(3)
2.4 Threshold Voltage
33(1)
2.5 Capacitance and Charge
34(3)
2.6 Reverse Conduction
37(2)
2.7 Summary
39(1)
References
40(1)
3 Driving GaN Transistors 41(28)
3.1 Introduction
41(3)
3.2 Gate Drive Voltage
44(1)
3.3 Gate Drive Resistance
45(1)
3.4 Capacitive Current-Mode Gate Drive Circuits for Gate Injection Transistors
46(2)
3.5 dv/dt Considerations
48(3)
3.5.1 Controlling dv/dt at Turn-On
48(1)
3.5.2 Complementary Device Turn-On
49(2)
3.6 di/dt Considerations
51(3)
3.6.1 Device Turn-On and Common-Source Inductance
51(2)
3.6.2 Off-State Device di/dt
53(1)
3.7 Bootstrapping and Floating Supplies
54(3)
3.8 Transient Immunity
57(2)
3.9 High-Frequency Considerations
59(1)
3.10 Gate Drivers for Enhancement-Mode GaN Transistors
60(1)
3.11 Cascode, Direct-Drive, and Higher-Voltage Configurations
60(4)
3.11.1 Cascode Devices
60(3)
3.11.2 Direct-Drive Devices
63(1)
3.11.3 Higher-Voltage Configurations
64(1)
3.12 Summary
64(1)
References
65(4)
4 Layout Considerations for GaN Transistor Circuits 69(16)
4.1 Introduction
69(1)
4.2 Minimizing Parasitic Inductance
69(3)
4.3 Conventional Power-Loop Designs
72(2)
4.3.1 Lateral Power-Loop Design
72(1)
4.3.2 Vertical Power-Loop Design
73(1)
4.4 Optimizing the Power Loop
74(2)
4.4.1 Impact of Integration on Parasitics
75(1)
4.5 Paralleling GaN Transistors
76(7)
4.5.1 Paralleling GaN Transistors for a Single Switch
76(3)
4.5.2 Paralleling GaN Transistors for Half-Bridge Applications
79(4)
4.6 Summary
83(1)
References
83(2)
5 Modeling and Measurement of GaN Transistors 85(20)
5.1 Introduction
85(1)
5.2 Electrical Modeling
85(6)
5.2.1 Basic Modeling
85(3)
5.2.2 Limitations of Basic Modeling
88(2)
5.2.3 Limitations of Circuit Simulation
90(1)
5.3 Measuring GaN Transistor Performance
91(10)
5.3.1 Voltage Measurement Requirements
94(2)
5.3.2 Probing and Measurement Techniques
96(3)
5.3.3 Measuring Non-Ground-Referenced Signals
99(1)
5.3.4 Current Measurement Requirement
100(1)
5.4 Summary
101(1)
References
102(3)
6 Thermal Management 105(26)
6.1 Introduction
105(1)
6.2 Thermal Equivalent Circuits
105(5)
6.2.1 Thermal Resistances in a Lead Frame Package
105(2)
6.2.2 Thermal Resistances in a Chip-Scale Package
107(1)
6.2.3 Junction-to-Ambient Thermal Resistance
108(1)
6.2.4 Transient Thermal Impedance
109(1)
6.3 Improving Thermal Performance with a Heatsink
110(4)
6.3.1 Selection of Heatsink and Thermal Interface Material (TIM)
111(1)
6.3.2 Heatsink Attachment for Bottom-Side Cooling
112(1)
6.3.3 Heatsink Attachment for Multisided Cooling
113(1)
6.4 System-Level Thermal Analysis
114(14)
6.4.1 Thermal Model of a Power Stage with Discrete GaN Transistors
115(2)
6.4.2 Thermal Model of a Power Stage with a Monolithic GaN Integrated Circuit
117(1)
6.4.3 Thermal Model of a Multiphase System
118(2)
6.4.4 Temperature Measurement
120(2)
6.4.4.1 Optical
120(1)
6.4.4.2 Physical Contact
121(1)
6.4.4.3 Temperature-Sensitive Electrical Parameter
122(1)
6.4.5 Experimental Characterization
122(2)
6.4.6 Application Examples
124(4)
6.5 Summary
128(1)
References
128(3)
7 Hard-Switching Topologies 131(46)
7.1 Introduction
131(1)
7.2 Hard-Switching Loss Analysis
131(23)
7.2.1 Hard-Switching Transitions with GaN Transistors
132(3)
7.2.2 Output Capacitance (COSS) Losses
135(3)
7.2.3 Turn-On Overlap Loss
138(7)
7.2.3.1 Current Rise Time
139(3)
7.2.3.2 Voltage Fall Time
142(3)
7.2.4 Turn-Off Overlap Losses
145(2)
7.2.4.1 Current Fall Time
146(1)
7.2.4.2 Voltage Rise Time
147(1)
7.2.5 Gate-Charge (QG) Losses
147(1)
7.2.6 Reverse Conduction Losses (PsD)
147(6)
7.2.6.1 Impact of Dead Time Selection on Reverse Conduction Loss
147(3)
7.2.6.2 Adding an Anti-Parallel Schottky Diode
150(3)
7.2.6.3 Dynamic COSS-Related Reverse Conduction Losses
153(1)
7.2.7 Reverse Recovery (QRR) Losses
153(1)
7.2.8 Hard-Switching Figure of Merit
154(1)
7.3 Impact of Parasitic Inductance on Hard-Switching Losses
154(6)
7.3.1 Impact of Common-Source Inductance (LCS)
154(3)
7.3.2 Impact of Power-Loop Inductance on Device Losses
157(3)
7.4 Frequency Impact on Magnetics
160(2)
7.4.1 Transformers
160(1)
7.4.2 Inductors
161(1)
7.5 Buck Converter Example
162(12)
7.5.1 Comparison with Experimental Measurements
169(1)
7.5.2 Consideration of Parasitic Inductance
170(4)
7.6 Summary
174(1)
References
174(3)
8 Resonant and Soft-Switching Converters 177(24)
8.1 Introduction
177(1)
8.2 Resonant and Soft-Switching Techniques
177(5)
8.2.1 Zero-Voltage and Zero-Current Switching
177(2)
8.2.2 Resonant DC-DC Converters
179(1)
8.2.3 Resonant Network Combinations
179(1)
8.2.4 Resonant Network Operating Principles
180(1)
8.2.5 Resonant Switching Cells
181(1)
8.2.6 Soft-Switching DC-DC Converters
182(1)
8.3 Key Device Parameters for Resonant and Soft-Switching Applications
182(6)
8.3.1 Output Charge (QOSS)
182(1)
8.3.2 Determining Output Charge from Manufacturers' Datasheets
183(1)
8.3.3 Comparing Output Charge of GaN Transistors and Si MOSFETs
184(1)
8.3.4 Gate Charge (QG)
185(1)
8.3.5 Determining Gate Charge for Resonant and Soft-Switching Applications
186(1)
8.3.6 Comparing Gate Charge of GaN Transistors and Si MOSFETs
187(1)
8.3.7 Comparing Performance Metrics of GaN Transistors and Si MOSFETs
187(1)
8.4 High-Frequency Resonant Bus Converter Example
188(11)
8.4.1 Resonant GaN and Si Bus Converter Designs
191(1)
8.4.2 GaN and Si Device Comparison
191(2)
8.4.3 Zero-Voltage Switching Transition
193(2)
8.4.4 Efficiency and Power Loss Comparison
195(2)
8.4.5 Impact of Further Device Improvements on Performance
197(2)
8.5 Summary
199(1)
References
199(2)
9 RF Performance 201(22)
9.1 Introduction
201(1)
9.2 Differences Between RF and Switching Transistors
202(2)
9.3 RF Basics
204(1)
9.4 RF Transistor Metrics
205(7)
9.4.1 Determining the High-Frequency Characteristics of RF Transistors
206(1)
9.4.2 Pulse Testing for Thermal Considerations
207(2)
9.4.3 Analyzing the s-Parameters
209(3)
9.4.3.1 Test for Stability
209(1)
9.4.3.2 Transistor Input and Output Reflection
210(1)
9.4.3.3 Transducer Gain
211(1)
9.4.3.4 Unilateral/Bilateral Transistor Test
211(1)
9.5 Amplifier Design Using Small-Signal s-Parameters
212(2)
9.5.1 Conditionally Stable Bilateral Transistor Amplifier Design
213(1)
9.5.1.1 Available Gain
213(1)
9.5.1.2 Constant Available Gain Circles
213(1)
9.6 Amplifier Design Example
214(7)
9.6.1 Matching and Bias Tee Network Design
216(3)
9.6.2 Experimental Verification
219(2)
9.7 Summary
221(1)
References
221(2)
10 DC-DC Power Conversion 223(28)
10.1 Introduction
223(1)
10.2 Non-Isolated DC-DC Converters
223(16)
10.2.1 The 12 VIN-1.2 VOUT Buck Converter with Discrete Devices
224(4)
10.2.2 The 12 VIN-1 VOUT Monolithic Half-Bridge IC-Based Point-of-Load Module
228(2)
10.2.3 Very-High-Frequency 12 VIN Monolithic Half-Bridge IC-Based Point-of-Load Module
230(3)
10.2.4 The 28 VIN-3.3 VOUT Point-of-Load Module
233(1)
10.2.5 The 48 VIN-12 VouT Buck Converter with Parallel GaN Transistors for High-Current Applications
233(6)
10.3 Transformer-Based DC-DC Converters
239(10)
10.3.1 Eighth-Brick Converter Example
239(4)
10.3.2 High-Performance 48V Step-Down LLC DC Transformer
243(8)
10.3.2.1 Circuit Overview
243(1)
10.3.2.2 GaN Transistor Advantage in the LLC Converter
244(1)
10.3.2.3 A 1 MHz, 900W, 48 V-12 V LLC Example Using GaN Transistors
245(3)
10.3.2.4 A 1 MHz, 900W, 48 V-6 V LLC Example Using GaN Transistors
248(1)
10.4 Summary
249(1)
References
250(1)
11 Multilevel Converters 251(18)
11.1 Introduction
251(1)
11.2 Benefits of Multilevel Converters
251(4)
11.2.1 Applying Multilevel Converters to 48 V Applications
252(2)
11.2.2 Multilevel Converters for High-Voltage (400V) Applications
254(1)
11.3 Gate Driver Implementation
255(1)
11.4 Bootstrap Power Supply Solutions for GaN Transistors
256(5)
11.5 Multilevel Converters for PFC Applications
261(2)
11.6 Experimental Examples
263(1)
11.6.1 Low Voltage
263(1)
11.6.2 High Voltage
264(1)
11.7 Summary
264(1)
References
265(4)
12 Class D Audio Amplifiers 269(12)
12.1 Introduction
269(4)
12.1.1 Total Harmonic Distortion
271(1)
12.1.2 Intermodulation Distortion
272(1)
12.2 GaN Transistor Class D Audio Amplifier Example
273(5)
12.2.1 Closed-Loop Amplifier
274(2)
12.2.2 Open-Loop Amplifier
276(2)
12.3 Summary
278(1)
References
278(3)
13 Lidar 281(20)
13.1 Introduction to Light Detection and Ranging (Lidar)
281(1)
13.2 Pulsed Laser Driver Overview
281(7)
13.2.1 Pulse Requirements
282(2)
13.2.2 Semiconductor Optical Sources
284(1)
13.2.3 Basic Driver Circuits
285(1)
13.2.4 Driver Switch Properties
286(2)
13.3 Basic Design Process
288(2)
13.3.1 Resonant Capacitive Discharge Laser Driver Design
288(1)
13.3.2 Quantitative Effect of Stray Inductance
289(1)
13.4 Hardware Driver Design
290(1)
13.5 Experimental Results
291(3)
13.5.1 High-Speed Laser Driver Design Example
291(1)
13.5.2 Fastest
292(1)
13.5.3 Highest Current
293(1)
13.5.4 Low Voltage
293(1)
13.6 Other Considerations
294(5)
13.6.1 Resonant Capacitors
294(1)
13.6.2 Charging
295(1)
13.6.3 Voltage Probing
295(1)
13.6.4 Current Sensing
296(1)
13.6.5 Dual-Edge Control
297(2)
13.7 Summary
299(1)
References
299(2)
14 Envelope Tracking 301(14)
14.1 Introduction
301(1)
14.2 High-Frequency GaN Transistors
302(2)
14.3 Topologies for Envelope Tracking Supplies
304(3)
14.3.1 Multiphase Converter
305(1)
14.3.2 Multilevel Converter
306(1)
14.4 Gate Driver Design
307(1)
14.5 Design Example: Tracking a 20 MHz LTE Envelope Signal
308(3)
14.6 Summary
311(1)
References
311(4)
15 Highly Resonant Wireless Power 315(22)
15.1 Introduction
315(1)
15.2 Overview of a Wireless Power System
316(4)
15.3 Amplifiers for Wireless Power Systems
320(2)
15.3.1 The Class E Amplifier
320(1)
15.3.2 ZVS Class D Amplifier
321(1)
15.4 Transistors Suitable for Wireless Power Amplifiers
322(3)
15.4.1 Figure of Merit for Wireless Power Amplifier Topologies
322(1)
15.4.2 GaN Transistors Evaluation in Wireless Power Applications
323(2)
15.5 Experimental Validation of GaN Transistor-Based Wireless Power Amplifiers
325(9)
15.5.1 Differential-Mode Class E Amplifier Example
325(5)
15.5.2 Differential-Mode ZVS Class D Amplifier Example
330(4)
15.6 Summary
334(1)
References
334(3)
16 GaN Transistors for Space Applications 337(10)
16.1 Introduction
337(1)
16.2 Failure Mechanisms
337(1)
16.3 Standards for Radiation Exposure and Tolerance
338(1)
16.4 Gamma Radiation Tolerance
338(2)
16.5 SEE Testing
340(1)
16.6 Neutron Radiation (Displacement Damage)
341(2)
16.7 Performance Comparison Between GaN Transistors and Rad-Hard Si MOSFETs
343(1)
16.8 Summary
344(1)
References
345(2)
17 Replacing Silicon Power MOSFETs 347(8)
17.1 Introduction: What Controls the Rate of Adoption?
347(1)
17.2 New Capabilities Enabled by GaN Transistors
347(2)
17.3 GaN Transistors Are Easy to Use
349(1)
17.4 Cost Versus Time
350(2)
17.4.1 Starting Material
351(1)
17.4.2 Epitaxial Growth
351(1)
17.4.3 Wafer Fabrication
351(1)
17.4.4 Test and Assembly
352(1)
17.5 GaN Transistors Are Reliable
352(1)
17.6 Future Direction of GaN Transistors
352(1)
17.7 Summary
353(1)
References
354(1)
Appendix 355(6)
Index 361
Alex Lidow, Ph.D., is CEO of Efficient Power Conversion Corporation (EPC), USA.

Michael de Rooij, Ph.D., is Vice President of Applications Engineering at EPC Corporation, USA.

Johan Strydom, Ph.D., is Advanced Development Manager, Kilby Labs, Texas Instruments, USA.

David Reusch, Ph.D., is Principal Scientist, VPT, Inc., USA.

John Glaser is Director, Applications Engineering, EPC Corporation, USA.