Muutke küpsiste eelistusi

Geometric Approximation Theory 2021 ed. [Pehme köide]

  • Formaat: Paperback / softback, 508 pages, kõrgus x laius: 235x155 mm, kaal: 807 g, 21 Illustrations, black and white; XXI, 508 p. 21 illus., 1 Paperback / softback
  • Sari: Springer Monographs in Mathematics
  • Ilmumisaeg: 30-Mar-2023
  • Kirjastus: Springer Nature Switzerland AG
  • ISBN-10: 3030909530
  • ISBN-13: 9783030909536
Teised raamatud teemal:
  • Pehme köide
  • Hind: 141,35 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 166,29 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 508 pages, kõrgus x laius: 235x155 mm, kaal: 807 g, 21 Illustrations, black and white; XXI, 508 p. 21 illus., 1 Paperback / softback
  • Sari: Springer Monographs in Mathematics
  • Ilmumisaeg: 30-Mar-2023
  • Kirjastus: Springer Nature Switzerland AG
  • ISBN-10: 3030909530
  • ISBN-13: 9783030909536
Teised raamatud teemal:
This monograph provides a comprehensive introduction to the classical geometric approximation theory, emphasizing important themes related to the theory including uniqueness, stability, and existence of elements of best approximation. It presents a number of fundamental results for both these and related problems, many of which appear for the first time in monograph form. The text also discusses the interrelations between main objects of geometric approximation theory, formulating a number of auxiliary problems for demonstration. Central ideas include the problems of existence and uniqueness of elements of best approximations as well as properties of sets including subspaces of polynomials and splines, classes of rational functions, and abstract subsets of normed linear spaces. The book begins with a brief introduction to geometric approximation theory, progressing through fundamental classical ideas and results as a basis for various approximation sets, suns, and Chebyshev systems. It concludes with a review of approximation by abstract sets and related problems, presenting novel results throughout the section. This text is suitable for both theoretical and applied viewpoints and especially researchers interested in advanced aspects of the field.
Main notation, definitions, auxillary results, and examples.- Chebyshev
alternation theorem, Haar and Mairhuber's theorems.- Best approximation in
Euclidean spaces.- Existence and compactness.- Characterization of best
approximation.- Convexity of Chebyshev sets and sums.- Connectedness and
stability.- Existence of Chebyshev subspaces.- EfimovStechkin spaces.
Uniform convexity and uniform smoothness. Uniqueness and strong uniqueness of
best approximation in uniformly convex spaces.- Solarity of Chebyshev sets.-
Rational approximation.- Haar cones and varisolvencity.- Approximation of
vector-valued functions.- The Jung constant.- Chebyshev centre of a set.-
Width. Approximation by a family of sets.- Approximative properties of
arbitrary sets.- Chebyshev systems of functions in the spaces C, Cn, and Lp.-
Radon, Helly, and Carathéodory theorems. Decomposition theorem.- Some open
problems.- Index.