Muutke küpsiste eelistusi

E-raamat: Geometric Approximation Theory

Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 159,93 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This monograph provides a comprehensive introduction to the classical geometric approximation theory, emphasizing important themes related to the theory including uniqueness, stability, and existence of elements of best approximation. It presents a number of fundamental results for both these and related problems, many of which appear for the first time in monograph form. The text also discusses the interrelations between main objects of geometric approximation theory, formulating a number of auxiliary problems for demonstration. Central ideas include the problems of existence and uniqueness of elements of best approximations as well as properties of sets including subspaces of polynomials and splines, classes of rational functions, and abstract subsets of normed linear spaces. The book begins with a brief introduction to geometric approximation theory, progressing through fundamental classical ideas and results as a basis for various approximation sets, suns, and Chebyshev systems. It concludes with a review of approximation by abstract sets and related problems, presenting novel results throughout the section. This text is suitable for both theoretical and applied viewpoints and especially researchers interested in advanced aspects of the field. 
Main notation, definitions, auxillary results, and examples.- Chebyshev
alternation theorem, Haar and Mairhuber's theorems.- Best approximation in
Euclidean spaces.- Existence and compactness.- Characterization of best
approximation.- Convexity of Chebyshev sets and sums.- Connectedness and
stability.- Existence of Chebyshev subspaces.- EfimovStechkin spaces.
Uniform convexity and uniform smoothness. Uniqueness and strong uniqueness of
best approximation in uniformly convex spaces.- Solarity of Chebyshev sets.-
Rational approximation.- Haar cones and varisolvencity.- Approximation of
vector-valued functions.- The Jung constant.- Chebyshev centre of a set.-
Width. Approximation by a family of sets.- Approximative properties of
arbitrary sets.- Chebyshev systems of functions in the spaces C, Cn, and Lp.-
Radon, Helly, and Carathéodory theorems. Decomposition theorem.- Some open
problems.- Index.