Muutke küpsiste eelistusi

Graph-Based Representations in Pattern Recognition: 14th IAPR-TC-15 International Workshop, GbRPR 2025, Caen, France, June 2527, 2025, Proceedings [Pehme köide]

Edited by , Edited by , Edited by , Edited by
  • Formaat: Paperback / softback, 278 pages, kõrgus x laius: 235x155 mm, 68 Illustrations, color; 8 Illustrations, black and white; XI, 278 p. 76 illus., 68 illus. in color., 1 Paperback / softback
  • Sari: Lecture Notes in Computer Science 15727
  • Ilmumisaeg: 08-Jun-2025
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3031941381
  • ISBN-13: 9783031941382
  • Pehme köide
  • Hind: 113,55 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 133,59 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 278 pages, kõrgus x laius: 235x155 mm, 68 Illustrations, color; 8 Illustrations, black and white; XI, 278 p. 76 illus., 68 illus. in color., 1 Paperback / softback
  • Sari: Lecture Notes in Computer Science 15727
  • Ilmumisaeg: 08-Jun-2025
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3031941381
  • ISBN-13: 9783031941382

This book constitutes the refereed proceedings of the 14th IAPR-TC-15 International Workshop on Graph-Based Representations in Pattern Recognition, GbRPR 2025, held in Caen, France, in June 2025.

The 25 full papers presented here were carefully reviewed and selected from 33 submissions. They are organized as per the following topical sections: Cybersecurity based on Graph models; Graph based bioinformatics; Graph similarities and graph patterns; GNN: shortcomings and solutions; Graph learning and computer vision.

.- Cybersecurity based on Graph models.


.- A Modular Triple Exchange Co-learning Framework for Anomaly Detection in
Scarcely Labeled Graph Data.


.- Advanced Malware Detection in Code Repositories Using Graph Neural
Network.


.- Resistance Distance Guided Node Injection Attack on Graph Neural Network.


.- Graph based bioinformatics.


.- Gene Co-Expression Networks Are Poor Proxies for Expert-Curated
Gene Regulatory Networks.


.- Graph Neural Network Based on Molecular and Pharmacophoric Features for
Drug Design Applications.


.- Graph-Based Representations of Almost Constant Graphs for
Nanotoxicity Prediction.


.- Label Modulated Dynamic Graph Convolution for Subcellular Structure
Segmentation from Nanoscopy Image.


.- Insights on Using Graph Neural Networks for Sulcal Graphs Predictive
Models.


.- Graph Neural Networks for Multimodal Brain Connectivity Analysis in
Multiple Sclerosis.


.- Graph similarities and graph patterns.


.-  A Geometric Perspective on Graph Similarity Learning using Convex Hulls.


.- VF-GPU: Exploiting Parallel GPU Architectures to Solve Subgraph
Isomorphis.


.- Grammatical Path Network: Unveiling Cycles Through Path Computation.


.- Deep QMiner: Towards a generalized DeepQ-Learning Approach for
Graph Pattern Mining.


.- GNN: shortcomings and solutions.


.- An Empirical Investigation of Shortcuts in Graph Learning.


.-  A General Sampling Framework for Graph Convolutional Network Training.


.- Fusion of GNN and GBDT Models for Graph and Node Classification.


.- Harnessing GraphSAGE for Learning Representations of Massive Transactional
networks.


.- Entropy-Guided Graph Clustering via Rényi Optimization.


.- Graph learning and computer vision.


.- Exploring a Graph Regression Problem in River Networks.


.- Saliency Matters: from nodes to objects.


.- Hierarchical super-pixels graph neural networks for image semantic
segmentation.


.- Lifting some Secrets about Contrast Pyramids.


.- An Evolution Equation Involving the Generalized Biased Infinity
Laplacian on Graphs.


.- Doc2Graph-X: A Multilingual Graph-Based Framework for Form Understanding.


.- VisHubGAT: Visible Connectivity and Hub Nodes for Multimodal
Entity Extraction.