Preface |
|
xix | |
Author |
|
xxi | |
|
List of Abbreviations and Notations |
|
|
xxiii | |
|
|
1 | (10) |
|
1.1 Historical Overview of Integrated Optics and Photonics |
|
|
1 | (3) |
|
1.2 Why Analysis of Optical Guided Wave Devices? |
|
|
4 | (1) |
|
|
5 | (1) |
|
|
6 | (5) |
|
|
8 | (3) |
|
2 Single-Mode Planar Optical Waveguides |
|
|
11 | (68) |
|
|
11 | (2) |
|
2.2 Formation of Planar Single-Mode Waveguide Problems |
|
|
13 | (6) |
|
2.2.1 Transverse Electric/Transverse Magnetic Wave Equation |
|
|
13 | (1) |
|
2.2.1.1 Continuity Requirements and Boundary Conditions |
|
|
14 | (1) |
|
2.2.1.2 Index Profile Construction |
|
|
14 | (1) |
|
2.2.1.3 Normalization and Simplification |
|
|
15 | (1) |
|
2.2.1.4 Modal Parameters of Planar Optical Waveguides |
|
|
16 | (3) |
|
2.3 Approximate Analytical Methods of Solution |
|
|
19 | (30) |
|
2.3.1 Asymmetrical Waveguides |
|
|
19 | (1) |
|
2.3.1.1 Variational Techniques |
|
|
19 | (6) |
|
2.3.1.2 Wentzel--Kramers--Brilluoin Method |
|
|
25 | (6) |
|
2.3.2 Symmetrical Waveguides |
|
|
31 | (1) |
|
2.3.2.1 Wentzel--Kramers--Brilluoin Eigenvalue Equation |
|
|
32 | (1) |
|
2.3.2.2 Two-Parameter Profile-Moment Method |
|
|
33 | (7) |
|
2.3.2.3 New Equivalence Relation for Planar Optical Waveguides |
|
|
40 | (9) |
|
|
49 | (1) |
|
2.4 Appendix A: Maxwell Equations in Dielectric Media |
|
|
49 | (2) |
|
|
49 | (1) |
|
|
50 | (1) |
|
2.4.3 Boundary Conditions |
|
|
50 | (1) |
|
2.4.4 Reciprocity Theorems |
|
|
51 | (1) |
|
2.4.4.1 General Reciprocity Theorem |
|
|
51 | (1) |
|
2.4.4.2 Conjugate Reciprocity Theorem |
|
|
51 | (1) |
|
2.5 Appendix B: Exact Analysis of Clad-Linear Optical Waveguides |
|
|
51 | (3) |
|
2.5.1 Asymmetrical Clad-Linear Profile |
|
|
52 | (1) |
|
2.5.1.1 Eigenvalue Equation |
|
|
52 | (1) |
|
|
53 | (1) |
|
2.5.2 Symmetrical Waveguide |
|
|
53 | (1) |
|
2.5.2.1 Eigenvalue Equation |
|
|
53 | (1) |
|
|
53 | (1) |
|
2.6 Appendix C: Wentzel--Kramers--Brilluoin Method, Turning Points and Connection Formulae |
|
|
54 | (13) |
|
|
54 | (1) |
|
2.6.2 Derivation of the Wentzel--Kramers--Brilluoin Approximate Solutions |
|
|
54 | (3) |
|
2.6.3 Turning Point Corrections |
|
|
57 | (1) |
|
2.6.3.1 Langer's Approximate Solution Valid at Turning Point |
|
|
57 | (2) |
|
2.6.3.2 Behavior of Turning Point |
|
|
59 | (1) |
|
2.6.3.3 Error Bound for φ Turning Point |
|
|
60 | (2) |
|
2.6.4 Correction Formulae |
|
|
62 | (2) |
|
2.6.5 Application of Correction Formulae |
|
|
64 | (1) |
|
2.6.5.1 Ordinary Turning Point Problem |
|
|
64 | (2) |
|
2.6.5.2 Effect of an Index Discontinuity at a Turning Point |
|
|
66 | (1) |
|
2.6.5.3 Buried Modes near an Index Discontinuity at a Turning Point |
|
|
66 | (1) |
|
2.7 Appendix D: Design and Simulation of Planar Optical Waveguides |
|
|
67 | (7) |
|
|
67 | (1) |
|
2.7.2 Theoretical Background |
|
|
67 | (1) |
|
2.7.2.1 Structures and Index Profiles |
|
|
67 | (1) |
|
2.7.2.2 Optical Fields of the Guided Transverse Electronic Modes |
|
|
68 | (2) |
|
2.7.2.3 Design of Optical Waveguide Parameters: Preliminary Work |
|
|
70 | (1) |
|
2.7.3 Simulation of Optical Fields and Propagation in Slab Optical Waveguide Structures |
|
|
70 | (1) |
|
2.7.3.1 Lightwaves Propagation in Guided Straight Structures |
|
|
71 | (2) |
|
2.7.3.2 Lightwaves Propagation in Guided Bent Structures |
|
|
73 | (1) |
|
2.7.3.3 Lightwaves Propagation in Y-Junction (Splitter) and Interferometric Structures |
|
|
74 | (1) |
|
|
74 | (5) |
|
|
76 | (3) |
|
3 3D Integrated Optical Waveguides |
|
|
79 | (48) |
|
|
79 | (1) |
|
|
80 | (6) |
|
3.2.1 Field and Modes Guided in Rectangular Optical Waveguides |
|
|
81 | (1) |
|
3.2.1.1 Mode Fields of Hx Modes |
|
|
81 | (3) |
|
3.2.1.2 Boundary Conditions at the Interfaces |
|
|
84 | (1) |
|
3.2.2 Mode Fields of Ey Modes |
|
|
85 | (1) |
|
3.2.3 Dispersion Characteristics |
|
|
86 | (1) |
|
3.3 Effective Index Method |
|
|
86 | (5) |
|
3.3.1 General Considerations |
|
|
86 | (4) |
|
|
90 | (1) |
|
3.3.3 Finite Difference Numerical Techniques for 3D Waveguides |
|
|
91 | (1) |
|
3.4 Non-Uniform Grid Semivectorial Polarized Finite Difference Method for Optical Waveguides with Arbitrary Index Profile |
|
|
91 | (21) |
|
3.4.1 Propagation Equation |
|
|
91 | (1) |
|
3.4.2 Formulation of Non-Uniform Grid Difference Equation |
|
|
92 | (1) |
|
3.4.2.1 Quasi-Transverse Electronic Mode |
|
|
93 | (5) |
|
3.4.2.2 Inverse Power Method |
|
|
98 | (2) |
|
3.4.3 Ti:LiNbO3 Diffused Channel Waveguide |
|
|
100 | (1) |
|
3.4.3.1 Refractive Index Profile of the Ti:LiNbO3 Waveguide |
|
|
100 | (4) |
|
3.4.3.2 Numerical Simulation and Discussion |
|
|
104 | (8) |
|
3.5 Mode Modeling of Rib Waveguides |
|
|
112 | (9) |
|
3.5.1 Choice of Grid Size |
|
|
115 | (3) |
|
|
118 | (1) |
|
|
118 | (3) |
|
|
121 | (2) |
|
|
123 | (4) |
|
|
123 | (4) |
|
4 Single-Mode Optical Fibers: Structures and Transmission Properties |
|
|
127 | (82) |
|
|
127 | (14) |
|
|
127 | (1) |
|
4.1.2 Optical Fiber: General Properties |
|
|
128 | (1) |
|
4.1.2.1 Geometrical Structures and Index Profile |
|
|
128 | (2) |
|
4.1.3 Fundamental Mode of Weakly Guiding Fibers |
|
|
130 | (1) |
|
4.1.3.1 Solutions of the Wave Equation for Step Index Fiber |
|
|
130 | (2) |
|
4.1.3.2 Gaussian Approximation |
|
|
132 | (3) |
|
4.1.3.3 Cutoff Properties |
|
|
135 | (1) |
|
4.1.3.4 Power Distribution |
|
|
136 | (2) |
|
4.1.3.5 Approximation of Spot Size r0 of a Step Index Fiber |
|
|
138 | (1) |
|
4.1.4 Equivalent Step Index (ESI) Description |
|
|
138 | (1) |
|
4.1.4.1 Definitions of Equivalent Step Index Parameters |
|
|
139 | (1) |
|
4.1.4.2 Accuracy and Limits |
|
|
140 | (1) |
|
4.1.4.3 Examples on Equivalent Step Index Techniques |
|
|
140 | (1) |
|
|
141 | (1) |
|
4.2 Nonlinear Optical Effects |
|
|
141 | (6) |
|
4.2.1 Nonlinear Self Phase Modulation Effects |
|
|
142 | (1) |
|
4.2.2 Self Phase Modulation |
|
|
142 | (1) |
|
4.2.3 Cross Phase Modulation |
|
|
143 | (1) |
|
4.2.4 Stimulated Scattering Effects |
|
|
144 | (1) |
|
4.2.4.1 Stimulated Brillouin Scattering |
|
|
144 | (1) |
|
4.2.4.2 Stimulated Raman Scattering |
|
|
145 | (1) |
|
|
146 | (1) |
|
4.3 Optical Fiber Manufacturing and Cabling |
|
|
147 | (1) |
|
|
148 | (1) |
|
4.5 Signal Attenuation and Dispersion |
|
|
148 | (6) |
|
4.5.1 Introductory Remarks |
|
|
149 | (2) |
|
4.5.2 Signal Attenuation in Optical Fibers |
|
|
151 | (1) |
|
4.5.2.1 Intrinsic or Material Attenuation |
|
|
151 | (1) |
|
|
151 | (1) |
|
4.5.2.3 Rayleigh Scattering |
|
|
151 | (1) |
|
|
152 | (1) |
|
|
152 | (1) |
|
4.5.2.6 Microbending Loss |
|
|
152 | (1) |
|
4.5.2.7 Joint or Splice Loss |
|
|
153 | (1) |
|
4.5.2.8 Attenuation Coefficient |
|
|
154 | (1) |
|
4.6 Signal Distortion in Optical Fibers |
|
|
154 | (11) |
|
4.6.1 Basics on Group Velocity |
|
|
154 | (2) |
|
4.6.2 Group Velocity Dispersion |
|
|
156 | (1) |
|
4.6.2.1 Material Dispersion |
|
|
156 | (3) |
|
4.6.2.2 Waveguide Dispersion |
|
|
159 | (3) |
|
4.6.2.3 Alternative Expression for Waveguide Dispersion Parameter |
|
|
162 | (1) |
|
4.6.2.4 Higher Order Dispersion |
|
|
162 | (1) |
|
4.6.2.5 Polarization Mode Dispersion |
|
|
163 | (2) |
|
4.7 Transfer Function of Single Mode Fibers |
|
|
165 | (10) |
|
4.7.1 Linear Transfer Function |
|
|
165 | (5) |
|
4.7.2 Nonlinear Fiber Transfer Function |
|
|
170 | (5) |
|
4.7.3 Transmission Bit Rate and the Dispersion Factor |
|
|
175 | (1) |
|
|
175 | (3) |
|
|
176 | (2) |
|
4.8.2 Modulation Instability |
|
|
178 | (1) |
|
4.8.3 Effects of Mode Hopping |
|
|
178 | (1) |
|
4.9 Advanced Optical Fibers: Dispersion-Shifted, Flattened and Compensated Optical Fibers |
|
|
178 | (2) |
|
4.10 Numerical Solution: Split Step Fourier Method |
|
|
180 | (7) |
|
4.10.1 Symmetrical Split Step Fourier Method (SSFM) |
|
|
180 | (1) |
|
4.10.2 MATLAB® Program and MATLAB Simulink Models of the SSFM |
|
|
181 | (1) |
|
|
181 | (4) |
|
4.10.2.2 MATLAB Simulink Model |
|
|
185 | (1) |
|
4.10.2.3 Modeling of Polarization Mode Dispersion |
|
|
185 | (1) |
|
4.10.2.4 Optimization of Symmetrical SSFM |
|
|
186 | (1) |
|
|
186 | (1) |
|
4.11 Appendix: MATLAB Program for the Design of Optical Fibers |
|
|
187 | (6) |
|
4.12 Program Listings of the Split Step Fourier Method with Self Phase Modulation and Raman Gain Distribution |
|
|
193 | (3) |
|
4.13 Program Listings of an Initialization File (Linked with Split Step Fourier Method of Section 4.12) |
|
|
196 | (3) |
|
|
199 | (10) |
|
|
206 | (1) |
|
|
207 | (2) |
|
5 Design of Single-Mode Optical Fiber Waveguides |
|
|
209 | (82) |
|
|
209 | (1) |
|
5.2 Unified Formulation of Optical Fiber Waveguide Problems |
|
|
210 | (13) |
|
5.2.1 First Order Scalar Wave Equation |
|
|
211 | (3) |
|
5.2.2 Eigenvalue Equation |
|
|
214 | (1) |
|
5.2.3 Polarization Correction to b |
|
|
215 | (1) |
|
5.2.4 Waveguide Characteristics Parameters |
|
|
216 | (1) |
|
5.2.4.1 Chromatic Fiber Dispersion |
|
|
216 | (3) |
|
|
219 | (2) |
|
5.2.4.3 Fiber Extinct Loss Formulae |
|
|
221 | (2) |
|
5.2.4.4 Generalized Mode Cutoffs |
|
|
223 | (1) |
|
5.3 Simplified Approach to the Design of Single-Mode Optical Fibers |
|
|
223 | (10) |
|
5.3.1 Introductory Remarks |
|
|
223 | (1) |
|
5.3.2 Classification Scheme for Single-Mode Optical Fibers |
|
|
224 | (1) |
|
5.3.2.1 Fiber with Small Waveguide Dispersion |
|
|
225 | (1) |
|
5.3.2.2 Fibers with Large Uniform Waveguide Dispersion |
|
|
225 | (1) |
|
5.3.2.3 Fibers with Very Large Steep Waveguide Dispersion |
|
|
226 | (1) |
|
5.3.2.4 Fiber with Ultra-Large Waveguide Dispersion |
|
|
226 | (1) |
|
5.3.3 Practical Limit of Single-Mode Optical Fiber Design |
|
|
226 | (1) |
|
5.3.4 Fiber Design Methodology |
|
|
227 | (1) |
|
5.3.5 Design Parameters and Equations |
|
|
228 | (1) |
|
5.3.5.1 Group Velocity Dispersion (GVD) |
|
|
228 | (2) |
|
|
230 | (1) |
|
5.3.6 Triple-Clad Profile |
|
|
230 | (1) |
|
5.3.6.1 Profile Construction |
|
|
230 | (2) |
|
5.3.6.2 Waveguide Guiding Parameters of Triple-Clad Profile Fiber |
|
|
232 | (1) |
|
5.4 Dispersion Flattening and Compensating |
|
|
233 | (9) |
|
5.4.1 Approximation of Waveguide Dispersion Parameter Curves |
|
|
234 | (3) |
|
5.4.2 Effect of Core and Cladding Radius on the Total Dispersion |
|
|
237 | (2) |
|
5.4.3 Effects of Refractive Indices of the Cladding Layers on the Total Dispersion Parameter |
|
|
239 | (3) |
|
5.4.4 Effect of Doping Concentration on the Total Dispersion |
|
|
242 | (1) |
|
|
242 | (2) |
|
5.5.1 Design Algorithm for DFF |
|
|
242 | (1) |
|
5.5.2 Design Algorithm for DCF |
|
|
242 | (2) |
|
|
244 | (3) |
|
|
244 | (1) |
|
|
245 | (2) |
|
|
247 | (1) |
|
|
247 | (2) |
|
|
249 | (42) |
|
Appendix A Derivatives of the RI with Respect to Wavelength |
|
|
252 | (1) |
|
Appendix B Higher Order Derivatives of the Propagation Constant |
|
|
253 | (2) |
|
MATLAB Program for Design of Single-Mode Optical Fibers |
|
|
255 | (30) |
|
|
285 | (6) |
|
6 Scalar Coupled-Mode Analysis |
|
|
291 | (42) |
|
|
291 | (1) |
|
6.2 Coupler Configurations |
|
|
291 | (3) |
|
|
291 | (1) |
|
6.2.1.1 Two-Mode Couplers |
|
|
291 | (1) |
|
6.2.1.2 Fiber-Slab Couplers |
|
|
292 | (1) |
|
6.2.1.3 Grating-Assisted Couplers |
|
|
292 | (1) |
|
|
292 | (1) |
|
|
293 | (1) |
|
|
293 | (1) |
|
6.2.5 Fiber-Slab Couplers |
|
|
293 | (1) |
|
|
294 | (10) |
|
6.3.1 Coupled-Mode Equations |
|
|
294 | (1) |
|
|
295 | (1) |
|
6.3.3 Symmetric Two-Mode Coupler |
|
|
296 | (1) |
|
6.3.3.1 Coupled-Mode Equations |
|
|
296 | (1) |
|
6.3.3.2 Analytical Solutions |
|
|
297 | (3) |
|
6.3.4 Asymmetric Two-Mode Coupler |
|
|
300 | (1) |
|
6.3.4.1 Coupled-Mode Equations |
|
|
300 | (1) |
|
6.3.4.2 Analytical Solutions |
|
|
301 | (3) |
|
|
304 | (6) |
|
6.4.1 Coupled-Mode Equations |
|
|
304 | (3) |
|
6.4.2 Compound-Mode Equations |
|
|
307 | (1) |
|
6.4.3 Coupling Coefficients |
|
|
308 | (1) |
|
6.4.4 Attenuation Coefficients |
|
|
309 | (1) |
|
|
310 | (2) |
|
6.5.1 Fiber Bend Expression |
|
|
310 | (1) |
|
6.5.2 Effects on Coupling |
|
|
311 | (1) |
|
6.6 Numerical Calculations |
|
|
312 | (3) |
|
6.6.1 Optical and Structural Parameters |
|
|
312 | (1) |
|
6.6.1.1 Uniform Fiber-Slab Couplers |
|
|
312 | (1) |
|
6.6.1.2 Couplers with Bend Fibers |
|
|
313 | (2) |
|
6.7 Results and Discussion |
|
|
315 | (13) |
|
6.7.1 Characteristics of Mode Coupling |
|
|
317 | (1) |
|
6.7.2 Characteristics of Ridge Modes |
|
|
318 | (1) |
|
6.7.3 Effects of Other Waveguide Parameters |
|
|
319 | (1) |
|
6.7.3.1 Effect of Light Wavelength |
|
|
320 | (2) |
|
6.7.3.2 Effect of Guide-Layer Size |
|
|
322 | (2) |
|
6.7.3.3 Effect of the Refractive Index of the Cladding |
|
|
324 | (1) |
|
6.7.4 Distributed Coupling |
|
|
324 | (1) |
|
6.7.4.1 Fixing no Each Time while Varying nf, with Respect to ns |
|
|
324 | (3) |
|
6.7.4.2 Fixing nf Each Time while Varying no |
|
|
327 | (1) |
|
|
328 | (2) |
|
6.8.1 Symmetric and Asymmetric Two-Mode Coupling Systems |
|
|
328 | (1) |
|
6.8.2 Uniform Fiber-Slab Coupling Systems |
|
|
329 | (1) |
|
6.8.3 Distributed Fiber-Slab Coupling Systems |
|
|
329 | (1) |
|
|
330 | (3) |
|
|
330 | (3) |
|
7 Full Coupled-Mode Theory |
|
|
333 | (62) |
|
7.1 Full Coupled-Mode Analysis |
|
|
333 | (22) |
|
|
333 | (1) |
|
|
333 | (1) |
|
7.1.2.1 Full Coupled-Mode Equations |
|
|
333 | (1) |
|
7.1.2.2 Analytical Solutions |
|
|
334 | (4) |
|
7.1.3 Fiber-Slab Couplers |
|
|
338 | (1) |
|
7.1.3.1 Full Coupled-Mode Equations |
|
|
338 | (4) |
|
7.1.4 Full Compound-Mode Equations |
|
|
342 | (1) |
|
|
343 | (1) |
|
7.1.5.1 Power Conservation Law |
|
|
343 | (1) |
|
7.1.5.2 Full Scalar Coupled-Mode Expression |
|
|
344 | (1) |
|
7.1.6 Numerical Results and Discussion |
|
|
344 | (1) |
|
7.1.6.1 Parameters and Computer Programs |
|
|
345 | (1) |
|
7.1.6.2 Effects of Higher-Order Terms |
|
|
345 | (5) |
|
7.1.6.3 Characteristics of Mode Coupling |
|
|
350 | (1) |
|
7.1.6.4 Characteristics of Ridge Modes |
|
|
350 | (4) |
|
|
354 | (1) |
|
7.1.7.1 Full CMT of Two-Mode Coupling Systems |
|
|
354 | (1) |
|
7.1.7.2 Full CMT of Fiber-Slab Coupling Systems |
|
|
355 | (1) |
|
7.2 Scalar CMT with Vectorial Corrections |
|
|
355 | (10) |
|
|
355 | (1) |
|
7.2.2 Formulations for Fiber-Slab Couplers |
|
|
356 | (1) |
|
7.2.2.1 Field Expression and Index Profile |
|
|
356 | (1) |
|
7.2.2.2 Coupled-Mode Equations |
|
|
357 | (1) |
|
7.2.2.3 Vector-Correcting Coupling Coefficients |
|
|
358 | (1) |
|
7.2.3 Numerical Results and Discussion |
|
|
359 | (1) |
|
7.2.3.1 Effects on Mode Coupling |
|
|
359 | (1) |
|
7.2.3.2 Effect of Slab Thickness |
|
|
360 | (2) |
|
7.2.3.3 Effects on Coupling Coefficients |
|
|
362 | (1) |
|
7.2.3.4 Effects on Compound Modes |
|
|
363 | (1) |
|
|
364 | (1) |
|
7.3 Grating-Assisted Fiber-Slab Couplers |
|
|
365 | (8) |
|
|
365 | (1) |
|
7.3.2 Analytical Formulation |
|
|
365 | (1) |
|
7.3.2.1 Coupled-Mode Equations |
|
|
365 | (2) |
|
7.3.2.2 Additional Coupling Coefficients |
|
|
367 | (1) |
|
7.3.3 Numerical Results and Discussion |
|
|
368 | (1) |
|
7.3.3.1 Effects on Mode Coupling |
|
|
368 | (1) |
|
7.3.3.2 Effects of Grating Parameters |
|
|
369 | (3) |
|
|
372 | (1) |
|
7.4 Analysis of Nonlinear Waveguide Couplers |
|
|
373 | (14) |
|
7.4.1 Nonlinear Two-Mode Couplers |
|
|
373 | (1) |
|
|
373 | (1) |
|
|
374 | (1) |
|
7.4.1.3 Generalized Full CMT |
|
|
375 | (7) |
|
7.4.2 Nonlinear Fiber-Slab Couplers |
|
|
382 | (1) |
|
7.4.2.1 Simplified Scalar CMT |
|
|
382 | (1) |
|
7.4.2.2 Coupling Coefficients |
|
|
383 | (1) |
|
7.4.2.3 Power Tuning Effects |
|
|
384 | (2) |
|
|
386 | (1) |
|
7.4.3.1 Nonlinear Two-Mode Couplers |
|
|
386 | (1) |
|
7.4.3.2 Nonlinear Fiber-Slab Couplers |
|
|
387 | (1) |
|
7.5 Coupling in Dual-Core Microstructure Fibers |
|
|
387 | (6) |
|
|
387 | (1) |
|
7.5.2 Coupling Characteristics |
|
|
388 | (3) |
|
7.5.3 Dual-Core MOF Design without Loss |
|
|
391 | (1) |
|
|
392 | (1) |
|
|
393 | (2) |
|
|
393 | (2) |
|
8 Nonlinear Optical Waveguides: Switching, Parametric Conversion and Systems Applications |
|
|
395 | (62) |
|
|
395 | (1) |
|
8.2 Formulation of Electromagnetic Wave Equations for Nonlinear Optical Waveguides |
|
|
396 | (11) |
|
8.2.1 Introductory Remarks |
|
|
396 | (1) |
|
8.2.2 Nonlinear Wave Equations and Constitutive Relations |
|
|
397 | (1) |
|
8.2.3 Extended Operator and Penalty Function Method |
|
|
398 | (2) |
|
8.2.4 Eigenvalues and Methods of Moments |
|
|
400 | (3) |
|
8.2.5 Solution Methods for Nonlinear Generalized Eigenvalue Problems |
|
|
403 | (1) |
|
8.2.5.1 Successive over Relaxation and Rayleigh Quotient |
|
|
403 | (1) |
|
|
404 | (1) |
|
8.2.5.3 Posteri Error Estimate |
|
|
405 | (1) |
|
8.2.5.4 Nonlinear Acceleration Techniques |
|
|
406 | (1) |
|
8.3 Numerical Examples of Nonlinear Optical Waveguides |
|
|
407 | (14) |
|
8.3.1 Waveguides of Non-Saturation Nonlinear Permittivity |
|
|
407 | (1) |
|
|
407 | (5) |
|
8.3.1.2 Overlay Nonlinear Film and Linear Embedded Channel |
|
|
412 | (3) |
|
8.3.1.3 Waveguides of Nonlinear Permittivity with Saturation |
|
|
415 | (3) |
|
8.3.1.4 Bistability Phenomena in Nonlinear Optical Waveguide |
|
|
418 | (3) |
|
8.4 Nonlinear Optical Waveguide for Optical Transmission Systems |
|
|
421 | (14) |
|
|
421 | (2) |
|
8.4.2 Third-Order Nonlinearity and Propagation Equation |
|
|
423 | (2) |
|
|
425 | (1) |
|
8.4.3.1 Parametric Amplification |
|
|
425 | (4) |
|
8.4.3.2 Demultiplexing of the Optical Time Division Multiplexed Signal |
|
|
429 | (3) |
|
8.4.3.3 Triple Correlation Simulation Model |
|
|
432 | (2) |
|
8.4.3.4 Concluding Remarks |
|
|
434 | (1) |
|
8.5 Demultiplexing 320 Gb/s Optical Time Division Multiplexed-Differential Quadrature Phase Shift Keying Signals Using Parametric Conversion in Nonlinear Optical Waveguides |
|
|
435 | (15) |
|
|
437 | (3) |
|
8.5.2 Operational Principles |
|
|
440 | (4) |
|
8.5.2.1 Conventional Demultiplexing Technique |
|
|
444 | (1) |
|
8.5.2.2 Optical Coherent Demultiplexing and Demodulation |
|
|
445 | (1) |
|
|
446 | (1) |
|
8.5.3.1 Optical Time Division Multiplexed-Differential Quadrature Phase Shift Keying Transmitter |
|
|
446 | (1) |
|
|
446 | (1) |
|
8.5.3.3 Demultiplexer and Receiver |
|
|
446 | (2) |
|
8.5.3.4 Performance of Optical Time Division Multiplexed-Differential Quadrature Phase Shift Keying Receivers: A Comparison |
|
|
448 | (1) |
|
8.5.4 Influence of Synchronization |
|
|
448 | (2) |
|
|
450 | (4) |
|
|
454 | (3) |
|
|
454 | (3) |
|
9 Integrated Guided-Wave Photonic Transmitters |
|
|
457 | (64) |
|
|
457 | (1) |
|
|
458 | (7) |
|
|
458 | (2) |
|
9.2.2 Intensity Modulators |
|
|
460 | (1) |
|
9.2.2.1 Phasor Representation and Transfer Characteristics |
|
|
460 | (2) |
|
|
462 | (1) |
|
9.2.2.3 Chirp Free Optical Modulators |
|
|
462 | (2) |
|
9.2.2.4 Structures of Photonic Modulators |
|
|
464 | (1) |
|
9.2.2.5 Typical Operational Parameters |
|
|
464 | (1) |
|
9.3 Traveling Wave Electrodes for Integrated Modulators |
|
|
465 | (20) |
|
|
466 | (1) |
|
9.3.2 Numerical Formulation |
|
|
467 | (1) |
|
9.3.2.1 Discrete Fields and Potentials |
|
|
467 | (2) |
|
9.3.2.2 Electrode Line Capacitance, Characteristic Impedance and Microwave Effective Index |
|
|
469 | (2) |
|
9.3.2.3 Electric Fields Ex and Ey and the Overlap Integral |
|
|
471 | (1) |
|
9.3.3 Electrode Simulation and Discussions |
|
|
471 | (1) |
|
9.3.3.1 Grid Allocation and Modeling Performance |
|
|
471 | (3) |
|
|
474 | (2) |
|
9.3.4 Electro-Optic Overlap Integral, Γ |
|
|
476 | (2) |
|
9.3.5 Tilted Wall Electrode |
|
|
478 | (3) |
|
9.3.6 Frequency Responses of Phase Modulation by Single Electrode |
|
|
481 | (3) |
|
|
484 | (1) |
|
9.4 Lithium Niobate Optical Modulators: Devices and Applications |
|
|
485 | (7) |
|
9.4.1 Mach-Zehnder Interferometric Modulator and Ultra-High Speed Advanced Modulation Formats |
|
|
485 | (1) |
|
9.4.1.1 Amplitude Modulation |
|
|
486 | (1) |
|
|
486 | (1) |
|
9.4.1.3 Frequency Modulation |
|
|
486 | (1) |
|
9.4.2 LiNbO3 MZIM Fabrication |
|
|
487 | (1) |
|
9.4.3 Effects of Angled-Wall Structure on RF Electrodes |
|
|
488 | (2) |
|
9.4.4 Integrated Modulators and Modulation Formats |
|
|
490 | (2) |
|
|
492 | (1) |
|
9.5 Generation and Modulation of Optical Pulse Sequences |
|
|
492 | (8) |
|
9.5.1 Return-to-Zero Optical Pulses |
|
|
492 | (1) |
|
|
492 | (1) |
|
9.5.1.2 Phasor Representation |
|
|
493 | (5) |
|
9.5.2 Differential Phase Shift Keying |
|
|
498 | (1) |
|
|
498 | (1) |
|
9.5.2.2 Optical Differential Phase Shift Keying Transmitter |
|
|
499 | (1) |
|
9.6 Generation of Modulation Formats |
|
|
500 | (15) |
|
9.6.1 Amplitude Shift Keying |
|
|
500 | (1) |
|
9.6.1.1 Amplitude--Modulation Amplitude Shift Keying-Non-Return-to-Zero and Amplitude Shift Keying-Return-to-Zero |
|
|
500 | (1) |
|
9.6.1.2 Amplitude--Modulation on-off Keying Return-to-Zero Formats |
|
|
501 | (1) |
|
9.6.1.3 Amplitude--Modulation Carrier-Suppressed Return-to-Zero Formats |
|
|
501 | (2) |
|
9.6.2 Discrete Phase-Modulation Non-Return-to-Zero Formats |
|
|
503 | (1) |
|
9.6.2.1 Differential Phase Shift Keying |
|
|
503 | (1) |
|
9.6.2.2 Differential Quadrature Phase Shift Keying |
|
|
504 | (1) |
|
9.6.2.3 M-Ary Amplitude Differential Phase Shift Keying |
|
|
505 | (1) |
|
9.6.3 Continuous Phase-Modulation (PM)-Non-Return-to-Zero Formats |
|
|
506 | (3) |
|
9.6.3.1 Linear and Nonlinear Minimum Shift Keying |
|
|
509 | (2) |
|
9.6.3.2 Minimum Shift Keying as a Special Case of Continuous Phase Frequency Shift Keying |
|
|
511 | (1) |
|
9.6.3.3 Minimum Shift Keying as Offset Differential Quadrature Phase Shift Keying |
|
|
512 | (1) |
|
9.6.3.4 Configuration of Photonic Minimum Shift Keying Transmitter Using Two Cascaded Electro-Optic Phase Modulators |
|
|
512 | (2) |
|
9.6.3.5 Configuration of Optical Minimum Shift Keying Transmitter Using Mach-Zehnder Intensity Modulators: I-Q Approach |
|
|
514 | (1) |
|
9.6.4 Single Side Band (SSB) Optical Modulators |
|
|
514 | (1) |
|
|
515 | (6) |
|
|
518 | (3) |
|
10 Nonlinearity in Guided Wave Devices |
|
|
521 | (80) |
|
10.1 Nonlinear Effects in Integrated Optical Waveguides for Photonic Signal Processing |
|
|
521 | (28) |
|
10.1.1 Introductory Remarks |
|
|
521 | (1) |
|
10.1.2 Third-Order Nonlinearity and Parametric Four-Wave Mixing Process |
|
|
522 | (1) |
|
10.1.2.1 Nonlinear Wave Equation |
|
|
522 | (1) |
|
10.1.2.2 Four-Wave Mixing Coupled-Wave Equations |
|
|
523 | (1) |
|
|
524 | (1) |
|
10.1.3 Transmission Models and Nonlinear Guided Wave Devices |
|
|
525 | (1) |
|
10.1.4 System Applications of Third-Order Parametric Nonlinearity in Optical Signal Processing |
|
|
526 | (1) |
|
10.1.4.1 Parametric Amplifiers |
|
|
526 | (4) |
|
10.1.4.2 Wavelength Conversion and Nonlinear Phase Conjugation |
|
|
530 | (3) |
|
10.1.4.3 High-Speed Optical Switching |
|
|
533 | (4) |
|
10.1.4.4 Triple Correlation |
|
|
537 | (5) |
|
10.1.5 Application of Nonlinear Photonics in Advanced Telecommunications |
|
|
542 | (6) |
|
|
548 | (1) |
|
10.2 Nonlinear Effects in Actively Mode-locked Fiber Lasers |
|
|
549 | (11) |
|
10.2.1 Introductory Remarks |
|
|
549 | (1) |
|
|
549 | (1) |
|
10.2.2.1 Modeling of the Fiber |
|
|
550 | (1) |
|
10.2.2.2 Modeling of the Er:Doped Fiber Amplifiers |
|
|
550 | (1) |
|
10.2.2.3 Modeling of the Optical Modulator |
|
|
550 | (1) |
|
10.2.2.4 Modeling of the Optical Filter |
|
|
551 | (1) |
|
10.2.3 Nonlinear Effects in Actively Mode-Locked Fiber Lasers |
|
|
551 | (1) |
|
|
551 | (2) |
|
10.2.3.2 Detuning in Actively Mode-Locked Fiber Laser with Nonlinearity Effect |
|
|
553 | (2) |
|
10.2.3.3 Pulse Amplitude Equalization in Harmonic Mode-Locked Fiber Laser |
|
|
555 | (1) |
|
|
556 | (1) |
|
10.2.4.1 Experimental Setup |
|
|
556 | (1) |
|
10.2.4.2 Mode-Locked Pulse Train with 10 GHz Repetition Rate |
|
|
557 | (2) |
|
10.2.4.3 Pulse Shortening and Spectrum Broadening under Nonlinearity Effect |
|
|
559 | (1) |
|
|
559 | (1) |
|
10.3 Nonlinear Photonic Pre-Processing for Bispectrum Optical Receivers |
|
|
560 | (13) |
|
10.3.1 Introductory Remarks |
|
|
560 | (1) |
|
10.3.2 Bispectrum Optical Receiver |
|
|
561 | (1) |
|
10.3.3 Triple Correlation and Bispectra |
|
|
561 | (1) |
|
|
561 | (1) |
|
10.3.3.2 Gaussian Noise Rejection |
|
|
562 | (1) |
|
10.3.3.3 Encoding of Phase Information |
|
|
562 | (1) |
|
10.3.3.4 Eliminating Gaussian Noise |
|
|
562 | (1) |
|
10.3.4 Bispectral Optical Structures |
|
|
563 | (1) |
|
|
564 | (1) |
|
10.3.4.2 Technological Implementation |
|
|
564 | (1) |
|
10.3.5 Four-Wave Mixing in Highly Nonlinear Media |
|
|
565 | (1) |
|
10.3.6 Third Harmonic Conversion |
|
|
565 | (1) |
|
10.3.7 Conservation of Momentum |
|
|
565 | (1) |
|
10.3.8 Estimate of Optical Power Required for Four-Wave Mixing |
|
|
565 | (1) |
|
10.3.9 Mathematical Principles of Four-Wave Mixing and the Wave Equations |
|
|
566 | (1) |
|
10.3.9.1 Phenomena of Four-Wave Mixing |
|
|
566 | (1) |
|
10.3.9.2 Coupled Equations and Conversion Efficiency |
|
|
567 | (1) |
|
10.3.9.3 Evolution of Four-Wave Mixing along the Nonlinear Waveguide Section |
|
|
568 | (1) |
|
10.3.10 Transmission and Detection |
|
|
568 | (1) |
|
10.3.10.1 Optical Transmission Route and Simulation Platform |
|
|
568 | (1) |
|
10.3.10.2 Four-Wave Mixing and Bispectrum Receiving |
|
|
569 | (1) |
|
|
569 | (3) |
|
|
572 | (1) |
|
10.4 Raman Effects in Microstructure Optical Fibers or Photonic Crystal Fibers |
|
|
573 | (9) |
|
10.4.1 Introductory Remarks |
|
|
573 | (2) |
|
10.4.2 Raman Gain in Photonic Crystal Fibers |
|
|
575 | (1) |
|
10.4.2.1 Measurement of Raman Gain |
|
|
575 | (1) |
|
10.4.2.2 Effective Area and Raman Gain Coefficient |
|
|
576 | (6) |
|
|
582 | (1) |
|
10.5 Raman Gain of Segmented Core Profile Fibers |
|
|
582 | (10) |
|
10.5.1 Segmented-Core Fiber Design for Raman Amplification |
|
|
583 | (1) |
|
10.5.2 Advantages of Dispersion Compensating Fiber as a Lumped/Discrete Raman Amplifier (DRA) |
|
|
583 | (1) |
|
10.5.3 Spectrum of Raman Amplification |
|
|
584 | (1) |
|
10.5.4 Key Equations for Deducing the Raman Gain of Ge-Doped Silica |
|
|
584 | (2) |
|
10.5.5 Design Methodology for Dispersion Compensating Fiber---Discrete Raman Amplifiers |
|
|
586 | (3) |
|
|
589 | (1) |
|
10.5.7 Sampled Profile Design |
|
|
590 | (1) |
|
|
591 | (1) |
|
|
592 | (9) |
|
|
595 | (6) |
Appendix 1 Coordinate System Transformations |
|
601 | (6) |
Appendix 2 Models for Couplers in FORTRAN |
|
607 | (26) |
Appendix 3 Overlap Integral |
|
633 | (4) |
Appendix 4 Coupling Coefficients |
|
637 | (2) |
Appendix 5 Additional Coupling Coefficients |
|
639 | (2) |
Appendix 6 Elliptic Integral |
|
641 | (2) |
Appendix 7 Integrated Photonics: Fabrication Processes for LiNbO3 Ultra-Broadband Optical Modulators |
|
643 | (22) |
Appendix 8 Planar Waveguides by Finite Difference Method---FORTRAN PROGRAMS |
|
665 | (64) |
Appendix 9 Interdependence between Electric and Magnetic Fields and Electromagnetic Waves |
|
729 | (14) |
Index |
|
743 | |