Muutke küpsiste eelistusi

E-raamat: Guided Wave Photonics: Fundamentals and Applications with MATLAB

(Huawei Technologies Co., Ltd., European Research Center, Munich, Germany)
  • Formaat: 804 pages
  • Ilmumisaeg: 19-Apr-2016
  • Kirjastus: CRC Press Inc
  • ISBN-13: 9781439897164
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 84,50 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 804 pages
  • Ilmumisaeg: 19-Apr-2016
  • Kirjastus: CRC Press Inc
  • ISBN-13: 9781439897164
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Technical director of the European laboratory of a Chinese technology company, Binh investigates 100G and beyond optical transmission, and integrated optical technology and digital signal processing for extremely high transmission bit rates. Here he presents the theory and simulation of optical waveguides and wave propagation in a guided environment. His unified treatment covers the formulation of wave equations in the transverse plane and time-dependent propagation directions, the coupling of the guided wave systems, and nonlinear behaviors of the guided waves in such wave guiding systems. He assumes readers have a background in the propagation of electromagnetic waves, so dispenses with the usual introductory chapters on the fundamentals of the theory of guided waves, but does append the essentials. Annotation ©2011 Book News, Inc., Portland, OR (booknews.com)

A comprehensive presentation of the theory and simulation of optical waveguides and wave propagations in a guided environment, Guided Wave Photonics: Fundamentals and Applications with MATLAB® supplies fundamental and advanced understanding of integrated optical devices that are currently employed in modern optical fiber communications systems and photonic signal processing systems. While there are many texts available in this area, none provide the breadth and depth of coverage and computational rigor found in this one.

The author has distilled the information into a very practical, usable format. In a logical progression of theory and application, he starts with Maxwell's equations and progresses directly to optical waveguides (integrated optic and fiber optic), couplers, modulators, nonlinear effects and interactions, and system applications. With up-to-date coverage of applicable algorithms, design guides, material systems, and the latest device and system applications, the book addresses:

  • Fundamentals of guiding optical waves, including theoretical and simplified techniques
  • Linear and nonlinear aspects of optical waveguiding
  • Manipulating lightwaves by coupling and splitting
  • Interactions of lightwaves and ultra-fast electrical travelling waves in modern optical modulators
  • Applications of guided wave devices in optical communication systems and optical signal processing

Providing fundamental understanding of lightwave guiding and manipulating techniques, the text covers the field of integrated photonics by giving the principles, theoretical and applications. It explains how to solve the optical modes and their coupling as well as how to manipulate lightwaves for applications in communications and signal processing.

Preface xix
Author xxi
List of Abbreviations and Notations
xxiii
1 Introduction
1(10)
1.1 Historical Overview of Integrated Optics and Photonics
1(3)
1.2 Why Analysis of Optical Guided Wave Devices?
4(1)
1.3 Principal Objectives
5(1)
1.4
Chapters Overview
6(5)
References
8(3)
2 Single-Mode Planar Optical Waveguides
11(68)
2.1 Introduction
11(2)
2.2 Formation of Planar Single-Mode Waveguide Problems
13(6)
2.2.1 Transverse Electric/Transverse Magnetic Wave Equation
13(1)
2.2.1.1 Continuity Requirements and Boundary Conditions
14(1)
2.2.1.2 Index Profile Construction
14(1)
2.2.1.3 Normalization and Simplification
15(1)
2.2.1.4 Modal Parameters of Planar Optical Waveguides
16(3)
2.3 Approximate Analytical Methods of Solution
19(30)
2.3.1 Asymmetrical Waveguides
19(1)
2.3.1.1 Variational Techniques
19(6)
2.3.1.2 Wentzel--Kramers--Brilluoin Method
25(6)
2.3.2 Symmetrical Waveguides
31(1)
2.3.2.1 Wentzel--Kramers--Brilluoin Eigenvalue Equation
32(1)
2.3.2.2 Two-Parameter Profile-Moment Method
33(7)
2.3.2.3 New Equivalence Relation for Planar Optical Waveguides
40(9)
2.3.3 Concluding Remarks
49(1)
2.4 Appendix A: Maxwell Equations in Dielectric Media
49(2)
2.4.1 Maxwell Equations
49(1)
2.4.2 Wave Equation
50(1)
2.4.3 Boundary Conditions
50(1)
2.4.4 Reciprocity Theorems
51(1)
2.4.4.1 General Reciprocity Theorem
51(1)
2.4.4.2 Conjugate Reciprocity Theorem
51(1)
2.5 Appendix B: Exact Analysis of Clad-Linear Optical Waveguides
51(3)
2.5.1 Asymmetrical Clad-Linear Profile
52(1)
2.5.1.1 Eigenvalue Equation
52(1)
2.5.1.2 Mode Cutoff
53(1)
2.5.2 Symmetrical Waveguide
53(1)
2.5.2.1 Eigenvalue Equation
53(1)
2.5.2.2 Mode Cutoff
53(1)
2.6 Appendix C: Wentzel--Kramers--Brilluoin Method, Turning Points and Connection Formulae
54(13)
2.6.1 Introduction
54(1)
2.6.2 Derivation of the Wentzel--Kramers--Brilluoin Approximate Solutions
54(3)
2.6.3 Turning Point Corrections
57(1)
2.6.3.1 Langer's Approximate Solution Valid at Turning Point
57(2)
2.6.3.2 Behavior of Turning Point
59(1)
2.6.3.3 Error Bound for φ Turning Point
60(2)
2.6.4 Correction Formulae
62(2)
2.6.5 Application of Correction Formulae
64(1)
2.6.5.1 Ordinary Turning Point Problem
64(2)
2.6.5.2 Effect of an Index Discontinuity at a Turning Point
66(1)
2.6.5.3 Buried Modes near an Index Discontinuity at a Turning Point
66(1)
2.7 Appendix D: Design and Simulation of Planar Optical Waveguides
67(7)
2.7.1 Introduction
67(1)
2.7.2 Theoretical Background
67(1)
2.7.2.1 Structures and Index Profiles
67(1)
2.7.2.2 Optical Fields of the Guided Transverse Electronic Modes
68(2)
2.7.2.3 Design of Optical Waveguide Parameters: Preliminary Work
70(1)
2.7.3 Simulation of Optical Fields and Propagation in Slab Optical Waveguide Structures
70(1)
2.7.3.1 Lightwaves Propagation in Guided Straight Structures
71(2)
2.7.3.2 Lightwaves Propagation in Guided Bent Structures
73(1)
2.7.3.3 Lightwaves Propagation in Y-Junction (Splitter) and Interferometric Structures
74(1)
2.7 Problems
74(5)
References
76(3)
3 3D Integrated Optical Waveguides
79(48)
3.1 Introduction
79(1)
3.2 Marcatili's Method
80(6)
3.2.1 Field and Modes Guided in Rectangular Optical Waveguides
81(1)
3.2.1.1 Mode Fields of Hx Modes
81(3)
3.2.1.2 Boundary Conditions at the Interfaces
84(1)
3.2.2 Mode Fields of Ey Modes
85(1)
3.2.3 Dispersion Characteristics
86(1)
3.3 Effective Index Method
86(5)
3.3.1 General Considerations
86(4)
3.3.2 A Pseudo-Waveguide
90(1)
3.3.3 Finite Difference Numerical Techniques for 3D Waveguides
91(1)
3.4 Non-Uniform Grid Semivectorial Polarized Finite Difference Method for Optical Waveguides with Arbitrary Index Profile
91(21)
3.4.1 Propagation Equation
91(1)
3.4.2 Formulation of Non-Uniform Grid Difference Equation
92(1)
3.4.2.1 Quasi-Transverse Electronic Mode
93(5)
3.4.2.2 Inverse Power Method
98(2)
3.4.3 Ti:LiNbO3 Diffused Channel Waveguide
100(1)
3.4.3.1 Refractive Index Profile of the Ti:LiNbO3 Waveguide
100(4)
3.4.3.2 Numerical Simulation and Discussion
104(8)
3.5 Mode Modeling of Rib Waveguides
112(9)
3.5.1 Choice of Grid Size
115(3)
3.5.2 Numerical Results
118(1)
3.5.3 Higher Order Modes
118(3)
3.6 Conclusions
121(2)
3.7 Problems
123(4)
References
123(4)
4 Single-Mode Optical Fibers: Structures and Transmission Properties
127(82)
4.1 Optical Fibers
127(14)
4.1.1 Brief History
127(1)
4.1.2 Optical Fiber: General Properties
128(1)
4.1.2.1 Geometrical Structures and Index Profile
128(2)
4.1.3 Fundamental Mode of Weakly Guiding Fibers
130(1)
4.1.3.1 Solutions of the Wave Equation for Step Index Fiber
130(2)
4.1.3.2 Gaussian Approximation
132(3)
4.1.3.3 Cutoff Properties
135(1)
4.1.3.4 Power Distribution
136(2)
4.1.3.5 Approximation of Spot Size r0 of a Step Index Fiber
138(1)
4.1.4 Equivalent Step Index (ESI) Description
138(1)
4.1.4.1 Definitions of Equivalent Step Index Parameters
139(1)
4.1.4.2 Accuracy and Limits
140(1)
4.1.4.3 Examples on Equivalent Step Index Techniques
140(1)
4.1.4.4 General Method
141(1)
4.2 Nonlinear Optical Effects
141(6)
4.2.1 Nonlinear Self Phase Modulation Effects
142(1)
4.2.2 Self Phase Modulation
142(1)
4.2.3 Cross Phase Modulation
143(1)
4.2.4 Stimulated Scattering Effects
144(1)
4.2.4.1 Stimulated Brillouin Scattering
144(1)
4.2.4.2 Stimulated Raman Scattering
145(1)
4.2.4.3 Four-Wave Mixing
146(1)
4.3 Optical Fiber Manufacturing and Cabling
147(1)
4.4 Concluding Remarks
148(1)
4.5 Signal Attenuation and Dispersion
148(6)
4.5.1 Introductory Remarks
149(2)
4.5.2 Signal Attenuation in Optical Fibers
151(1)
4.5.2.1 Intrinsic or Material Attenuation
151(1)
4.5.2.2 Absorption
151(1)
4.5.2.3 Rayleigh Scattering
151(1)
4.5.2.4 Waveguide Loss
152(1)
4.5.2.5 Bending Loss
152(1)
4.5.2.6 Microbending Loss
152(1)
4.5.2.7 Joint or Splice Loss
153(1)
4.5.2.8 Attenuation Coefficient
154(1)
4.6 Signal Distortion in Optical Fibers
154(11)
4.6.1 Basics on Group Velocity
154(2)
4.6.2 Group Velocity Dispersion
156(1)
4.6.2.1 Material Dispersion
156(3)
4.6.2.2 Waveguide Dispersion
159(3)
4.6.2.3 Alternative Expression for Waveguide Dispersion Parameter
162(1)
4.6.2.4 Higher Order Dispersion
162(1)
4.6.2.5 Polarization Mode Dispersion
163(2)
4.7 Transfer Function of Single Mode Fibers
165(10)
4.7.1 Linear Transfer Function
165(5)
4.7.2 Nonlinear Fiber Transfer Function
170(5)
4.7.3 Transmission Bit Rate and the Dispersion Factor
175(1)
4.8 Fiber Nonlinearity
175(3)
4.8.1 SPM, XPM Effects
176(2)
4.8.2 Modulation Instability
178(1)
4.8.3 Effects of Mode Hopping
178(1)
4.9 Advanced Optical Fibers: Dispersion-Shifted, Flattened and Compensated Optical Fibers
178(2)
4.10 Numerical Solution: Split Step Fourier Method
180(7)
4.10.1 Symmetrical Split Step Fourier Method (SSFM)
180(1)
4.10.2 MATLAB® Program and MATLAB Simulink Models of the SSFM
181(1)
4.10.2.1 MATLAB Program
181(4)
4.10.2.2 MATLAB Simulink Model
185(1)
4.10.2.3 Modeling of Polarization Mode Dispersion
185(1)
4.10.2.4 Optimization of Symmetrical SSFM
186(1)
4.10.3 Remarks
186(1)
4.11 Appendix: MATLAB Program for the Design of Optical Fibers
187(6)
4.12 Program Listings of the Split Step Fourier Method with Self Phase Modulation and Raman Gain Distribution
193(3)
4.13 Program Listings of an Initialization File (Linked with Split Step Fourier Method of Section 4.12)
196(3)
4.14 Problems
199(10)
Some Questions
206(1)
References
207(2)
5 Design of Single-Mode Optical Fiber Waveguides
209(82)
5.1 Introduction
209(1)
5.2 Unified Formulation of Optical Fiber Waveguide Problems
210(13)
5.2.1 First Order Scalar Wave Equation
211(3)
5.2.2 Eigenvalue Equation
214(1)
5.2.3 Polarization Correction to b
215(1)
5.2.4 Waveguide Characteristics Parameters
216(1)
5.2.4.1 Chromatic Fiber Dispersion
216(3)
5.2.4.2 Spot Size
219(2)
5.2.4.3 Fiber Extinct Loss Formulae
221(2)
5.2.4.4 Generalized Mode Cutoffs
223(1)
5.3 Simplified Approach to the Design of Single-Mode Optical Fibers
223(10)
5.3.1 Introductory Remarks
223(1)
5.3.2 Classification Scheme for Single-Mode Optical Fibers
224(1)
5.3.2.1 Fiber with Small Waveguide Dispersion
225(1)
5.3.2.2 Fibers with Large Uniform Waveguide Dispersion
225(1)
5.3.2.3 Fibers with Very Large Steep Waveguide Dispersion
226(1)
5.3.2.4 Fiber with Ultra-Large Waveguide Dispersion
226(1)
5.3.3 Practical Limit of Single-Mode Optical Fiber Design
226(1)
5.3.4 Fiber Design Methodology
227(1)
5.3.5 Design Parameters and Equations
228(1)
5.3.5.1 Group Velocity Dispersion (GVD)
228(2)
5.3.5.2 Dispersion Slope
230(1)
5.3.6 Triple-Clad Profile
230(1)
5.3.6.1 Profile Construction
230(2)
5.3.6.2 Waveguide Guiding Parameters of Triple-Clad Profile Fiber
232(1)
5.4 Dispersion Flattening and Compensating
233(9)
5.4.1 Approximation of Waveguide Dispersion Parameter Curves
234(3)
5.4.2 Effect of Core and Cladding Radius on the Total Dispersion
237(2)
5.4.3 Effects of Refractive Indices of the Cladding Layers on the Total Dispersion Parameter
239(3)
5.4.4 Effect of Doping Concentration on the Total Dispersion
242(1)
5.5 Design Algorithm
242(2)
5.5.1 Design Algorithm for DFF
242(1)
5.5.2 Design Algorithm for DCF
242(2)
5.6 Design Cases
244(3)
5.6.1 Design Case 1
244(1)
5.6.2 Design Case 2
245(2)
5.6.3 Design Summary
247(1)
5.7 Concluding Remarks
247(2)
5.8 Problems
249(42)
Appendix A Derivatives of the RI with Respect to Wavelength
252(1)
Appendix B Higher Order Derivatives of the Propagation Constant
253(2)
MATLAB Program for Design of Single-Mode Optical Fibers
255(30)
References
285(6)
6 Scalar Coupled-Mode Analysis
291(42)
6.1 Introduction
291(1)
6.2 Coupler Configurations
291(3)
6.2.1 Overview
291(1)
6.2.1.1 Two-Mode Couplers
291(1)
6.2.1.2 Fiber-Slab Couplers
292(1)
6.2.1.3 Grating-Assisted Couplers
292(1)
6.2.2 Configurations
292(1)
6.2.3 Two-Mode Couplers
293(1)
6.2.4 Multimode Couplers
293(1)
6.2.5 Fiber-Slab Couplers
293(1)
6.3 Two-Mode Couplers
294(10)
6.3.1 Coupled-Mode Equations
294(1)
6.3.2 Power Parameters
295(1)
6.3.3 Symmetric Two-Mode Coupler
296(1)
6.3.3.1 Coupled-Mode Equations
296(1)
6.3.3.2 Analytical Solutions
297(3)
6.3.4 Asymmetric Two-Mode Coupler
300(1)
6.3.4.1 Coupled-Mode Equations
300(1)
6.3.4.2 Analytical Solutions
301(3)
6.4 Fiber-Slab Couplers
304(6)
6.4.1 Coupled-Mode Equations
304(3)
6.4.2 Compound-Mode Equations
307(1)
6.4.3 Coupling Coefficients
308(1)
6.4.4 Attenuation Coefficients
309(1)
6.5 Fiber Bending
310(2)
6.5.1 Fiber Bend Expression
310(1)
6.5.2 Effects on Coupling
311(1)
6.6 Numerical Calculations
312(3)
6.6.1 Optical and Structural Parameters
312(1)
6.6.1.1 Uniform Fiber-Slab Couplers
312(1)
6.6.1.2 Couplers with Bend Fibers
313(2)
6.7 Results and Discussion
315(13)
6.7.1 Characteristics of Mode Coupling
317(1)
6.7.2 Characteristics of Ridge Modes
318(1)
6.7.3 Effects of Other Waveguide Parameters
319(1)
6.7.3.1 Effect of Light Wavelength
320(2)
6.7.3.2 Effect of Guide-Layer Size
322(2)
6.7.3.3 Effect of the Refractive Index of the Cladding
324(1)
6.7.4 Distributed Coupling
324(1)
6.7.4.1 Fixing no Each Time while Varying nf, with Respect to ns
324(3)
6.7.4.2 Fixing nf Each Time while Varying no
327(1)
6.8 Concluding Remarks
328(2)
6.8.1 Symmetric and Asymmetric Two-Mode Coupling Systems
328(1)
6.8.2 Uniform Fiber-Slab Coupling Systems
329(1)
6.8.3 Distributed Fiber-Slab Coupling Systems
329(1)
6.9 Problems
330(3)
References
330(3)
7 Full Coupled-Mode Theory
333(62)
7.1 Full Coupled-Mode Analysis
333(22)
7.1.1 Introduction
333(1)
7.1.2 Two-Mode Couplers
333(1)
7.1.2.1 Full Coupled-Mode Equations
333(1)
7.1.2.2 Analytical Solutions
334(4)
7.1.3 Fiber-Slab Couplers
338(1)
7.1.3.1 Full Coupled-Mode Equations
338(4)
7.1.4 Full Compound-Mode Equations
342(1)
7.1.5 Power Conservation
343(1)
7.1.5.1 Power Conservation Law
343(1)
7.1.5.2 Full Scalar Coupled-Mode Expression
344(1)
7.1.6 Numerical Results and Discussion
344(1)
7.1.6.1 Parameters and Computer Programs
345(1)
7.1.6.2 Effects of Higher-Order Terms
345(5)
7.1.6.3 Characteristics of Mode Coupling
350(1)
7.1.6.4 Characteristics of Ridge Modes
350(4)
7.1.7 Concluding Remarks
354(1)
7.1.7.1 Full CMT of Two-Mode Coupling Systems
354(1)
7.1.7.2 Full CMT of Fiber-Slab Coupling Systems
355(1)
7.2 Scalar CMT with Vectorial Corrections
355(10)
7.2.1 Introduction
355(1)
7.2.2 Formulations for Fiber-Slab Couplers
356(1)
7.2.2.1 Field Expression and Index Profile
356(1)
7.2.2.2 Coupled-Mode Equations
357(1)
7.2.2.3 Vector-Correcting Coupling Coefficients
358(1)
7.2.3 Numerical Results and Discussion
359(1)
7.2.3.1 Effects on Mode Coupling
359(1)
7.2.3.2 Effect of Slab Thickness
360(2)
7.2.3.3 Effects on Coupling Coefficients
362(1)
7.2.3.4 Effects on Compound Modes
363(1)
7.2.4 Concluding Remarks
364(1)
7.3 Grating-Assisted Fiber-Slab Couplers
365(8)
7.3.1 Introduction
365(1)
7.3.2 Analytical Formulation
365(1)
7.3.2.1 Coupled-Mode Equations
365(2)
7.3.2.2 Additional Coupling Coefficients
367(1)
7.3.3 Numerical Results and Discussion
368(1)
7.3.3.1 Effects on Mode Coupling
368(1)
7.3.3.2 Effects of Grating Parameters
369(3)
7.3.4 Conclusions
372(1)
7.4 Analysis of Nonlinear Waveguide Couplers
373(14)
7.4.1 Nonlinear Two-Mode Couplers
373(1)
7.4.1.1 Power Parameters
373(1)
7.4.1.2 Simplified CMT
374(1)
7.4.1.3 Generalized Full CMT
375(7)
7.4.2 Nonlinear Fiber-Slab Couplers
382(1)
7.4.2.1 Simplified Scalar CMT
382(1)
7.4.2.2 Coupling Coefficients
383(1)
7.4.2.3 Power Tuning Effects
384(2)
7.4.3 Concluding Remarks
386(1)
7.4.3.1 Nonlinear Two-Mode Couplers
386(1)
7.4.3.2 Nonlinear Fiber-Slab Couplers
387(1)
7.5 Coupling in Dual-Core Microstructure Fibers
387(6)
7.5.1 Introduction
387(1)
7.5.2 Coupling Characteristics
388(3)
7.5.3 Dual-Core MOF Design without Loss
391(1)
7.5.4 Remarks
392(1)
7.6 Problems
393(2)
References
393(2)
8 Nonlinear Optical Waveguides: Switching, Parametric Conversion and Systems Applications
395(62)
8.1 Introduction
395(1)
8.2 Formulation of Electromagnetic Wave Equations for Nonlinear Optical Waveguides
396(11)
8.2.1 Introductory Remarks
396(1)
8.2.2 Nonlinear Wave Equations and Constitutive Relations
397(1)
8.2.3 Extended Operator and Penalty Function Method
398(2)
8.2.4 Eigenvalues and Methods of Moments
400(3)
8.2.5 Solution Methods for Nonlinear Generalized Eigenvalue Problems
403(1)
8.2.5.1 Successive over Relaxation and Rayleigh Quotient
403(1)
8.2.5.2 Vector Iteration
404(1)
8.2.5.3 Posteri Error Estimate
405(1)
8.2.5.4 Nonlinear Acceleration Techniques
406(1)
8.3 Numerical Examples of Nonlinear Optical Waveguides
407(14)
8.3.1 Waveguides of Non-Saturation Nonlinear Permittivity
407(1)
8.3.1.1 Embedded Channel
407(5)
8.3.1.2 Overlay Nonlinear Film and Linear Embedded Channel
412(3)
8.3.1.3 Waveguides of Nonlinear Permittivity with Saturation
415(3)
8.3.1.4 Bistability Phenomena in Nonlinear Optical Waveguide
418(3)
8.4 Nonlinear Optical Waveguide for Optical Transmission Systems
421(14)
8.4.1 Introduction
421(2)
8.4.2 Third-Order Nonlinearity and Propagation Equation
423(2)
8.4.3 Simulation Model
425(1)
8.4.3.1 Parametric Amplification
425(4)
8.4.3.2 Demultiplexing of the Optical Time Division Multiplexed Signal
429(3)
8.4.3.3 Triple Correlation Simulation Model
432(2)
8.4.3.4 Concluding Remarks
434(1)
8.5 Demultiplexing 320 Gb/s Optical Time Division Multiplexed-Differential Quadrature Phase Shift Keying Signals Using Parametric Conversion in Nonlinear Optical Waveguides
435(15)
8.5.1 Introduction
437(3)
8.5.2 Operational Principles
440(4)
8.5.2.1 Conventional Demultiplexing Technique
444(1)
8.5.2.2 Optical Coherent Demultiplexing and Demodulation
445(1)
8.5.3 Simulation Models
446(1)
8.5.3.1 Optical Time Division Multiplexed-Differential Quadrature Phase Shift Keying Transmitter
446(1)
8.5.3.2 Fiber Link
446(1)
8.5.3.3 Demultiplexer and Receiver
446(2)
8.5.3.4 Performance of Optical Time Division Multiplexed-Differential Quadrature Phase Shift Keying Receivers: A Comparison
448(1)
8.5.4 Influence of Synchronization
448(2)
8.6 Concluding Remarks
450(4)
8.7 Problems
454(3)
References
454(3)
9 Integrated Guided-Wave Photonic Transmitters
457(64)
9.1 Introduction
457(1)
9.2 Optical Modulators
458(7)
9.2.1 Phase Modulators
458(2)
9.2.2 Intensity Modulators
460(1)
9.2.2.1 Phasor Representation and Transfer Characteristics
460(2)
9.2.2.2 Bias Control
462(1)
9.2.2.3 Chirp Free Optical Modulators
462(2)
9.2.2.4 Structures of Photonic Modulators
464(1)
9.2.2.5 Typical Operational Parameters
464(1)
9.3 Traveling Wave Electrodes for Integrated Modulators
465(20)
9.3.1 Introduction
466(1)
9.3.2 Numerical Formulation
467(1)
9.3.2.1 Discrete Fields and Potentials
467(2)
9.3.2.2 Electrode Line Capacitance, Characteristic Impedance and Microwave Effective Index
469(2)
9.3.2.3 Electric Fields Ex and Ey and the Overlap Integral
471(1)
9.3.3 Electrode Simulation and Discussions
471(1)
9.3.3.1 Grid Allocation and Modeling Performance
471(3)
9.3.3.2 Model Accuracy
474(2)
9.3.4 Electro-Optic Overlap Integral, Γ
476(2)
9.3.5 Tilted Wall Electrode
478(3)
9.3.6 Frequency Responses of Phase Modulation by Single Electrode
481(3)
9.3.7 Remarks
484(1)
9.4 Lithium Niobate Optical Modulators: Devices and Applications
485(7)
9.4.1 Mach-Zehnder Interferometric Modulator and Ultra-High Speed Advanced Modulation Formats
485(1)
9.4.1.1 Amplitude Modulation
486(1)
9.4.1.2 Phase Modulation
486(1)
9.4.1.3 Frequency Modulation
486(1)
9.4.2 LiNbO3 MZIM Fabrication
487(1)
9.4.3 Effects of Angled-Wall Structure on RF Electrodes
488(2)
9.4.4 Integrated Modulators and Modulation Formats
490(2)
9.4.5 Remarks
492(1)
9.5 Generation and Modulation of Optical Pulse Sequences
492(8)
9.5.1 Return-to-Zero Optical Pulses
492(1)
9.5.1.1 Generation
492(1)
9.5.1.2 Phasor Representation
493(5)
9.5.2 Differential Phase Shift Keying
498(1)
9.5.2.1 Background
498(1)
9.5.2.2 Optical Differential Phase Shift Keying Transmitter
499(1)
9.6 Generation of Modulation Formats
500(15)
9.6.1 Amplitude Shift Keying
500(1)
9.6.1.1 Amplitude--Modulation Amplitude Shift Keying-Non-Return-to-Zero and Amplitude Shift Keying-Return-to-Zero
500(1)
9.6.1.2 Amplitude--Modulation on-off Keying Return-to-Zero Formats
501(1)
9.6.1.3 Amplitude--Modulation Carrier-Suppressed Return-to-Zero Formats
501(2)
9.6.2 Discrete Phase-Modulation Non-Return-to-Zero Formats
503(1)
9.6.2.1 Differential Phase Shift Keying
503(1)
9.6.2.2 Differential Quadrature Phase Shift Keying
504(1)
9.6.2.3 M-Ary Amplitude Differential Phase Shift Keying
505(1)
9.6.3 Continuous Phase-Modulation (PM)-Non-Return-to-Zero Formats
506(3)
9.6.3.1 Linear and Nonlinear Minimum Shift Keying
509(2)
9.6.3.2 Minimum Shift Keying as a Special Case of Continuous Phase Frequency Shift Keying
511(1)
9.6.3.3 Minimum Shift Keying as Offset Differential Quadrature Phase Shift Keying
512(1)
9.6.3.4 Configuration of Photonic Minimum Shift Keying Transmitter Using Two Cascaded Electro-Optic Phase Modulators
512(2)
9.6.3.5 Configuration of Optical Minimum Shift Keying Transmitter Using Mach-Zehnder Intensity Modulators: I-Q Approach
514(1)
9.6.4 Single Side Band (SSB) Optical Modulators
514(1)
9.7 Problems
515(6)
References
518(3)
10 Nonlinearity in Guided Wave Devices
521(80)
10.1 Nonlinear Effects in Integrated Optical Waveguides for Photonic Signal Processing
521(28)
10.1.1 Introductory Remarks
521(1)
10.1.2 Third-Order Nonlinearity and Parametric Four-Wave Mixing Process
522(1)
10.1.2.1 Nonlinear Wave Equation
522(1)
10.1.2.2 Four-Wave Mixing Coupled-Wave Equations
523(1)
10.1.2.3 Phase Matching
524(1)
10.1.3 Transmission Models and Nonlinear Guided Wave Devices
525(1)
10.1.4 System Applications of Third-Order Parametric Nonlinearity in Optical Signal Processing
526(1)
10.1.4.1 Parametric Amplifiers
526(4)
10.1.4.2 Wavelength Conversion and Nonlinear Phase Conjugation
530(3)
10.1.4.3 High-Speed Optical Switching
533(4)
10.1.4.4 Triple Correlation
537(5)
10.1.5 Application of Nonlinear Photonics in Advanced Telecommunications
542(6)
10.1.6 Remarks
548(1)
10.2 Nonlinear Effects in Actively Mode-locked Fiber Lasers
549(11)
10.2.1 Introductory Remarks
549(1)
10.2.2 Laser Model
549(1)
10.2.2.1 Modeling of the Fiber
550(1)
10.2.2.2 Modeling of the Er:Doped Fiber Amplifiers
550(1)
10.2.2.3 Modeling of the Optical Modulator
550(1)
10.2.2.4 Modeling of the Optical Filter
551(1)
10.2.3 Nonlinear Effects in Actively Mode-Locked Fiber Lasers
551(1)
10.2.3.1 Zero Detuning
551(2)
10.2.3.2 Detuning in Actively Mode-Locked Fiber Laser with Nonlinearity Effect
553(2)
10.2.3.3 Pulse Amplitude Equalization in Harmonic Mode-Locked Fiber Laser
555(1)
10.2.4 Experiments
556(1)
10.2.4.1 Experimental Setup
556(1)
10.2.4.2 Mode-Locked Pulse Train with 10 GHz Repetition Rate
557(2)
10.2.4.3 Pulse Shortening and Spectrum Broadening under Nonlinearity Effect
559(1)
10.2.5 Remarks
559(1)
10.3 Nonlinear Photonic Pre-Processing for Bispectrum Optical Receivers
560(13)
10.3.1 Introductory Remarks
560(1)
10.3.2 Bispectrum Optical Receiver
561(1)
10.3.3 Triple Correlation and Bispectra
561(1)
10.3.3.1 Definition
561(1)
10.3.3.2 Gaussian Noise Rejection
562(1)
10.3.3.3 Encoding of Phase Information
562(1)
10.3.3.4 Eliminating Gaussian Noise
562(1)
10.3.4 Bispectral Optical Structures
563(1)
10.3.4.1 Principles
564(1)
10.3.4.2 Technological Implementation
564(1)
10.3.5 Four-Wave Mixing in Highly Nonlinear Media
565(1)
10.3.6 Third Harmonic Conversion
565(1)
10.3.7 Conservation of Momentum
565(1)
10.3.8 Estimate of Optical Power Required for Four-Wave Mixing
565(1)
10.3.9 Mathematical Principles of Four-Wave Mixing and the Wave Equations
566(1)
10.3.9.1 Phenomena of Four-Wave Mixing
566(1)
10.3.9.2 Coupled Equations and Conversion Efficiency
567(1)
10.3.9.3 Evolution of Four-Wave Mixing along the Nonlinear Waveguide Section
568(1)
10.3.10 Transmission and Detection
568(1)
10.3.10.1 Optical Transmission Route and Simulation Platform
568(1)
10.3.10.2 Four-Wave Mixing and Bispectrum Receiving
569(1)
10.3.10.3 Performance
569(3)
10.3.11 Remarks
572(1)
10.4 Raman Effects in Microstructure Optical Fibers or Photonic Crystal Fibers
573(9)
10.4.1 Introductory Remarks
573(2)
10.4.2 Raman Gain in Photonic Crystal Fibers
575(1)
10.4.2.1 Measurement of Raman Gain
575(1)
10.4.2.2 Effective Area and Raman Gain Coefficient
576(6)
10.4.3 Remarks
582(1)
10.5 Raman Gain of Segmented Core Profile Fibers
582(10)
10.5.1 Segmented-Core Fiber Design for Raman Amplification
583(1)
10.5.2 Advantages of Dispersion Compensating Fiber as a Lumped/Discrete Raman Amplifier (DRA)
583(1)
10.5.3 Spectrum of Raman Amplification
584(1)
10.5.4 Key Equations for Deducing the Raman Gain of Ge-Doped Silica
584(2)
10.5.5 Design Methodology for Dispersion Compensating Fiber---Discrete Raman Amplifiers
586(3)
10.5.6 Design Steps
589(1)
10.5.7 Sampled Profile Design
590(1)
10.5.8 Remarks
591(1)
10.6 Summary
592(9)
References
595(6)
Appendix 1 Coordinate System Transformations 601(6)
Appendix 2 Models for Couplers in FORTRAN 607(26)
Appendix 3 Overlap Integral 633(4)
Appendix 4 Coupling Coefficients 637(2)
Appendix 5 Additional Coupling Coefficients 639(2)
Appendix 6 Elliptic Integral 641(2)
Appendix 7 Integrated Photonics: Fabrication Processes for LiNbO3 Ultra-Broadband Optical Modulators 643(22)
Appendix 8 Planar Waveguides by Finite Difference Method---FORTRAN PROGRAMS 665(64)
Appendix 9 Interdependence between Electric and Magnetic Fields and Electromagnetic Waves 729(14)
Index 743
Nguyen Le Binh