Preface |
|
xvii | |
|
|
xix | |
|
1 Introduction to 3D Integration |
|
|
1 | (12) |
|
|
|
1 | (2) |
|
1.2 Historical Evolution of Stacked Wafer Concepts |
|
|
3 | (1) |
|
1.3 3D Packaging vs 3D Integration |
|
|
4 | (2) |
|
1.4 Non-TSV 3D Stacking Technologies |
|
|
6 | (7) |
|
|
6 | (1) |
|
1.4.2 UTCS (Ultrathin Chip Stacking) IMEC, CNRS, U. Barcelona |
|
|
6 | (1) |
|
|
7 | (2) |
|
|
9 | (1) |
|
|
10 | (1) |
|
1.4.6 Toshiba System Block Module |
|
|
11 | (1) |
|
|
11 | (2) |
|
2 Drivers for 3D Integration |
|
|
13 | (12) |
|
|
|
|
|
13 | (1) |
|
2.2 Electrical Performance |
|
|
13 | (6) |
|
|
14 | (3) |
|
|
17 | (2) |
|
2.3 Power Consumption and Noise |
|
|
19 | (1) |
|
|
19 | (1) |
|
|
19 | (3) |
|
2.4.1 Non-Volatile Memory Technology: Flash |
|
|
20 | (1) |
|
2.4.2 Volatile Memory Technology: SRAM and DRAM |
|
|
21 | (1) |
|
|
21 | (1) |
|
|
22 | (1) |
|
2.6 Application Based Drivers |
|
|
22 | (3) |
|
|
22 | (1) |
|
|
22 | (1) |
|
|
23 | (1) |
|
2.6.4 Fields Programmable Gate Arrays (FPGAs) |
|
|
23 | (1) |
|
|
23 | (2) |
|
3 Overview of 3D Integration Process Technology |
|
|
25 | (20) |
|
|
|
3.1 3D Integration Terminology |
|
|
25 | (3) |
|
3.1.1 Through Silicon Vias (TSVs) |
|
|
25 | (2) |
|
|
27 | (1) |
|
3.1.3 Aligned Wafer/IC Bonding |
|
|
28 | (1) |
|
|
28 | (6) |
|
3.3 Technologies for 3D Integration |
|
|
34 | (11) |
|
|
34 | (4) |
|
3.3.2 Temporary Bonding to Carrier Wafer |
|
|
38 | (1) |
|
|
39 | (1) |
|
|
40 | (3) |
|
|
43 | (2) |
|
I Through Silicon Via Fabrication |
|
|
45 | (130) |
|
4 Deep Reactive Ion Etching of Through Silicon Vias |
|
|
47 | (46) |
|
|
|
|
|
|
|
|
|
|
Richard (M.C.M.) van de Sanden |
|
|
|
47 | (7) |
|
4.1.1 Deep Reactive Ion Etching as Breakthrough Enabling Through-Wafer Interconnects |
|
|
47 | (1) |
|
4.1.2 State of the Art and Basic Principles in DRIE |
|
|
48 | (1) |
|
|
49 | (1) |
|
4.1.4 Alternatives for Via Hole Creation |
|
|
50 | (4) |
|
4.2 DRIE Equipment and Characterization |
|
|
54 | (8) |
|
4.2.1 High-Density Plasma Reactors |
|
|
54 | (5) |
|
|
59 | (1) |
|
4.2.3 Plasma Diagnostics and Surface Analysis |
|
|
60 | (2) |
|
|
62 | (16) |
|
|
62 | (4) |
|
4.3.2 High Aspect Ratio Features |
|
|
66 | (5) |
|
4.3.3 Sidewall Passivation, Depassivation and Profile Control |
|
|
71 | (7) |
|
4.4 Practical Solutions in Via Etching |
|
|
78 | (8) |
|
4.4.1 Undercut and Scallop Reduction |
|
|
79 | (1) |
|
4.4.2 Sidewall Roughness Minimization |
|
|
79 | (1) |
|
|
80 | (3) |
|
4.4.4 Notching at Dielectric Interfaces |
|
|
83 | (1) |
|
4.4.5 Inspection of Via Structures |
|
|
83 | (2) |
|
4.4.6 In Situ Trench Depth Measurement |
|
|
85 | (1) |
|
|
86 | (7) |
|
Appendix A Glossary of Abbreviations |
|
|
87 | (1) |
|
Appendix B Examples of DRIE Recipes |
|
|
88 | (1) |
|
|
89 | (4) |
|
|
93 | (14) |
|
|
|
|
93 | (1) |
|
5.2 Laser Technology for 3D Packaging |
|
|
94 | (1) |
|
|
94 | (1) |
|
|
94 | (1) |
|
|
94 | (6) |
|
|
94 | (1) |
|
|
95 | (5) |
|
5.4 Results for 3D Chip Stacking |
|
|
100 | (3) |
|
|
103 | (1) |
|
|
104 | (3) |
|
|
105 | (2) |
|
|
107 | (14) |
|
|
|
107 | (1) |
|
|
107 | (8) |
|
6.2.1 Sub-Atmospheric CVD |
|
|
109 | (2) |
|
6.2.2 Process Sequence of O3-Activated SACVD Deposition |
|
|
111 | (1) |
|
6.2.3 Conformal SACVD O3 TEOS Films for 3D Integration |
|
|
111 | (4) |
|
6.3 Dielectric Film Properties |
|
|
115 | (1) |
|
6.4 3D-Specifics Regarding SiO2 Dielectrics |
|
|
116 | (3) |
|
6.4.1 Wafer Pre-Processing |
|
|
116 | (1) |
|
6.4.2 Backside Processing Requirements on SiO2 Film Conformality in TSVs |
|
|
117 | (1) |
|
6.4.3 SiO2 Film Deposition on Thinned Silicon Substrates |
|
|
118 | (1) |
|
|
119 | (2) |
|
|
119 | (2) |
|
7 Insulation -- Organic Dielectrics |
|
|
121 | (12) |
|
|
|
|
121 | (4) |
|
|
122 | (3) |
|
7.1.2 Limiting Aspects of Parylene |
|
|
125 | (1) |
|
7.2 Plasma-Polymerized BCB |
|
|
125 | (1) |
|
7.3 Spray-Coated Organic Insulators |
|
|
126 | (2) |
|
7.4 Laser-Drilled Organics |
|
|
128 | (2) |
|
|
130 | (3) |
|
|
130 | (3) |
|
|
133 | (24) |
|
|
|
|
|
133 | (1) |
|
8.2 Copper Plating Equipment |
|
|
134 | (1) |
|
8.3 Copper Plating Processes |
|
|
135 | (6) |
|
|
138 | (1) |
|
8.3.2 Copper Full Fill With and Without Stud Formation |
|
|
139 | (2) |
|
8.4 Factors Affecting Copper Plating |
|
|
141 | (3) |
|
8.4.1 Via Profile and Smoothness |
|
|
141 | (1) |
|
8.4.2 Insulator/Barrier/Seed Layer Coverage |
|
|
142 | (1) |
|
|
143 | (1) |
|
|
144 | (2) |
|
8.5.1 Acid Copper Sulfate Chemistry |
|
|
144 | (1) |
|
8.5.2 Methane Sulfonic Acid Chemistry |
|
|
145 | (1) |
|
|
145 | (1) |
|
8.5.4 Other Copper Plating Chemistries |
|
|
145 | (1) |
|
8.6 Plating Process Requirements |
|
|
146 | (7) |
|
8.6.1 Suggested Mechanisms for Superconformal Deposition |
|
|
146 | (3) |
|
8.6.2 Effect of Waveform and Current Density on Fill Performance |
|
|
149 | (1) |
|
8.6.3 Effect of Deposition Waveform on Fill Performance |
|
|
150 | (1) |
|
8.6.4 Impact of Feature Dimension on Fill Time |
|
|
151 | (1) |
|
8.6.5 Impact of Feature Dimension on Overburden |
|
|
152 | (1) |
|
8.6.6 Bath Analysis and Maintenance |
|
|
153 | (1) |
|
|
153 | (4) |
|
|
154 | (3) |
|
9 Metallization by Chemical Vapor Deposition of W and Cu |
|
|
157 | (18) |
|
|
|
|
|
|
157 | (1) |
|
9.2 Commercial Precursors |
|
|
158 | (3) |
|
|
159 | (1) |
|
|
159 | (1) |
|
|
160 | (1) |
|
9.3 Deposition Process Flow |
|
|
161 | (8) |
|
|
162 | (1) |
|
|
163 | (2) |
|
|
165 | (3) |
|
9.3.4 Tungsten CVD Application to TSV Fill |
|
|
168 | (1) |
|
9.4 Complete TSV Metallization Including Filling and Etchback/CMP |
|
|
169 | (3) |
|
9.4.1 W-CVD Metallization |
|
|
169 | (2) |
|
9.4.2 Cu CVD Metallization |
|
|
171 | (1) |
|
|
172 | (3) |
|
|
173 | (2) |
|
II Wafer Thinning and Bonding Technology |
|
|
175 | (96) |
|
10 Fabrication, Processing and Singulation of Thin Wafers |
|
|
177 | (32) |
|
|
10.1 Applications for Thin Silicon Dies |
|
|
177 | (1) |
|
10.2 Principal Facts: Thinning and Wafer Bow |
|
|
177 | (2) |
|
10.2.1 Where Does this Phenomenon Come From? |
|
|
178 | (1) |
|
10.3 Grinding and Thinning |
|
|
179 | (4) |
|
10.3.1 Grinding Parameters |
|
|
180 | (1) |
|
10.3.2 Vice Versa Influences of Parameters |
|
|
181 | (2) |
|
10.4 Stability and Flexibility |
|
|
183 | (3) |
|
10.4.1 Measuring Breaking-Strength and Flexibility |
|
|
184 | (1) |
|
10.4.2 Statistics and Evaluation |
|
|
185 | (1) |
|
10.5 Chip Thickness, Theoretical Model, Macroscopic Features |
|
|
186 | (6) |
|
|
186 | (1) |
|
|
187 | (1) |
|
10.5.3 Macroscopic Features: Chip Strength, Flexibility, Roughness and Hardness |
|
|
188 | (3) |
|
10.5.4 From Blank to Processed Chips: Changes? |
|
|
191 | (1) |
|
10.6 Stabilizing the Thin Wafer: Tapes and Carrier Systems |
|
|
192 | (3) |
|
10.6.1 Special Tapes for Handling Wafers and Dies |
|
|
193 | (1) |
|
|
193 | (2) |
|
10.7 Separating the Chips: Dicing Influencing the Stability |
|
|
195 | (11) |
|
10.7.1 Classical Mechanical Dicing |
|
|
195 | (4) |
|
|
199 | (2) |
|
10.7.3 Comparing Methods of Separation |
|
|
201 | (5) |
|
|
206 | (1) |
|
|
206 | (3) |
|
|
207 | (2) |
|
11 Overview of Bonding Technologies for 3D Integration |
|
|
209 | (14) |
|
|
|
209 | (1) |
|
|
210 | (6) |
|
11.2.1 Direct Bonding Principles |
|
|
210 | (1) |
|
11.2.2 Surface Direct SiO/SiO Bonding |
|
|
211 | (4) |
|
11.2.3 Metal Surface Activated Bonding |
|
|
215 | (1) |
|
11.3 Adhesive and Solder Bonding |
|
|
216 | (3) |
|
|
217 | (1) |
|
11.3.2 Metal Soldering or Eutectic Bonding |
|
|
218 | (1) |
|
11.4 Comparison of the Different Bonding Technologies |
|
|
219 | (4) |
|
|
221 | (2) |
|
12 Chip-to-Wafer and Wafer-to-Wafer Integration Schemes |
|
|
223 | (26) |
|
|
|
|
|
12.1 Decision Criteria for 3D Integration |
|
|
223 | (4) |
|
12.1.1 Different Wafer Sizes |
|
|
223 | (1) |
|
|
224 | (1) |
|
12.1.3 Different Base Substrates |
|
|
224 | (1) |
|
12.1.4 Different Chip Size |
|
|
224 | (1) |
|
12.1.5 Number of Stacked Layers |
|
|
224 | (1) |
|
|
225 | (1) |
|
|
225 | (1) |
|
|
226 | (1) |
|
|
226 | (1) |
|
|
226 | (1) |
|
12.2 Enabling Technologies |
|
|
227 | (17) |
|
12.2.1 Aligned Wafer Bonding |
|
|
227 | (6) |
|
|
233 | (7) |
|
12.2.3 Temporary Bonding/Debonding |
|
|
240 | (2) |
|
12.2.4 Chip to Wafer Bonding |
|
|
242 | (2) |
|
12.3 Integration Schemes for 3D Interconnect |
|
|
244 | (4) |
|
12.3.1 Face-to-Face Chip Stacking |
|
|
244 | (1) |
|
12.3.2 Face-to-Back Chip Stacking |
|
|
245 | (3) |
|
|
248 | (1) |
|
|
248 | (1) |
|
13 Polymer Adhesive Bonding Technology |
|
|
249 | (12) |
|
|
|
|
13.1 Polymer Adhesive Bonding Principle |
|
|
249 | (1) |
|
13.2 Polymer Adhesive Bonding Requirements and Materials |
|
|
250 | (2) |
|
13.3 Wafer Bonding Technology Using Polymer Adhesives |
|
|
252 | (1) |
|
13.4 Bonding Characterizations |
|
|
253 | (5) |
|
13.4.1 Optical Inspection Using Glass Wafer |
|
|
255 | (1) |
|
13.4.2 Bonding Strength Characterization Using Four-Point Bending |
|
|
255 | (2) |
|
13.4.3 Adhesive Wafer Bonding Integrity |
|
|
257 | (1) |
|
|
258 | (3) |
|
|
258 | (3) |
|
14 Bonding with Intermetallic Compounds |
|
|
261 | (10) |
|
|
|
261 | (1) |
|
14.2 Technological Concepts |
|
|
261 | (8) |
|
14.2.1 Basic Material Selection |
|
|
262 | (1) |
|
14.2.2 Principal Processing Scheme |
|
|
263 | (2) |
|
14.2.3 Limiting Conditions for Applications |
|
|
265 | (4) |
|
|
269 | (2) |
|
|
269 | (2) |
|
III Integration Processes |
|
|
271 | (246) |
|
|
273 | (16) |
|
|
|
273 | (1) |
|
15.2 Chip-on-Chip Activity |
|
|
273 | (2) |
|
15.3 Imaging Chips with TSV |
|
|
275 | (1) |
|
|
276 | (7) |
|
15.5 Microprocessors & Misc. Applications |
|
|
283 | (6) |
|
16 Wafer-Level 3D System Integration |
|
|
289 | (30) |
|
|
|
|
|
289 | (2) |
|
16.2 Wafer-Level 3D System Integration Technologies |
|
|
291 | (17) |
|
|
308 | (6) |
|
|
314 | (5) |
|
17 Interconnect Process at the University of Arkansas |
|
|
319 | (20) |
|
|
|
|
319 | (2) |
|
|
321 | (9) |
|
|
330 | (3) |
|
|
333 | (1) |
|
|
334 | (5) |
|
|
334 | (5) |
|
18 Vertical Interconnection by ASET |
|
|
339 | (36) |
|
|
|
|
339 | (2) |
|
18.2 Fabrication Process Overview |
|
|
341 | (1) |
|
18.3 Via Filling by Cu Electrodeposition |
|
|
341 | (4) |
|
18.4 Handling of Thin Wafer |
|
|
345 | (3) |
|
|
348 | (15) |
|
18.6 Thermal Performance of Chip Stack Module |
|
|
363 | (4) |
|
18.7 Electric Performance of Vertical Interconnection |
|
|
367 | (3) |
|
18.8 Practical Application of Through-vias |
|
|
370 | (1) |
|
|
371 | (4) |
|
19 3D Integration at CEA-LETI |
|
|
375 | (18) |
|
|
|
|
|
|
375 | (1) |
|
19.2 Circuit Transfer for Efficient Stacking in 3D Integration |
|
|
375 | (1) |
|
19.3 Non-Destructive Characterization of Stacked Layers |
|
|
376 | (4) |
|
19.4 Example of 3D Integration Application Developments |
|
|
380 | (10) |
|
|
390 | (3) |
|
20 Lincoln Laboratory's 3D Circuit Integration Technology |
|
|
393 | (20) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
393 | (1) |
|
20.2 Lincoln Laboratory's Wafer-Scale 3D Circuit Integration Technology |
|
|
394 | (8) |
|
20.3 Transferred FDSOI Transistor and Device Properties |
|
|
402 | (4) |
|
20.4 3D Circuit and Device Results |
|
|
406 | (3) |
|
|
409 | (4) |
|
21 3D Integration Technologies at IMEC |
|
|
413 | (18) |
|
|
|
413 | (2) |
|
21.2 Key Requirements for 3D-Interconnect Technologies |
|
|
415 | (3) |
|
21.3 3D Technologies at IMEC |
|
|
418 | (13) |
|
22 Fabrication Using Copper Thermo-Compression Bonding at MIT |
|
|
431 | (16) |
|
|
|
|
|
431 | (1) |
|
22.2 Copper Thermo-Compression Bonding |
|
|
431 | (3) |
|
|
434 | (8) |
|
|
442 | (3) |
|
|
445 | (2) |
|
23 Rensselaer 3D Integration Processes |
|
|
447 | (16) |
|
|
|
|
|
447 | (1) |
|
23.2 Via-Last 3D Platform Using Adhesive Wafer Bonding and Cu Damascene Inter-Wafer Interconnect |
|
|
447 | (2) |
|
23.3 Via-Last 3D Platform Feasibility Demonstration: Via-Chain Structure with Key Unit Processes of Alignment, Bonding, Thinning and Inter-wafer Interconnection |
|
|
449 | (2) |
|
23.4 Via-First 3D Platform with Wafer-Bonding of Damascene-Patterned Metal/Adhesive Redistribution Layers |
|
|
451 | (2) |
|
23.5 Via-First 3D Platform Feasibility Demonstration: Via-Chain Structure with Cu/BCB Redistribution Layers |
|
|
453 | (1) |
|
23.6 Unit Process Advancements |
|
|
454 | (4) |
|
23.7 Carbon Nanotube (CNT) Interconnect |
|
|
458 | (2) |
|
|
460 | (3) |
|
24 3D Integration at Tezzaron Semiconductor Corporation |
|
|
463 | (24) |
|
|
|
463 | (1) |
|
|
463 | (1) |
|
|
464 | (1) |
|
24.4 Interconnect Density |
|
|
465 | (1) |
|
24.5 Process Requirements for 3D DRAM |
|
|
466 | (1) |
|
24.6 FaStack Process Overview |
|
|
467 | (1) |
|
24.7 Bonding Before Thinning |
|
|
467 | (1) |
|
|
467 | (5) |
|
24.9 Stacking Process Flow Details (with SuperContacts) |
|
|
472 | (1) |
|
24.10 Stacking Process Flow with SuperVias |
|
|
473 | (1) |
|
24.11 Additional Stacking Process Issues |
|
|
474 | (7) |
|
|
481 | (1) |
|
24.13 Qualification Results |
|
|
481 | (4) |
|
|
485 | (1) |
|
24.15 Abbreviations and Definitions |
|
|
486 | (1) |
|
25 3D Integration at Ziptronix, Inc. |
|
|
487 | (18) |
|
|
|
487 | (2) |
|
|
489 | (8) |
|
25.3 Direct Bond Interconnect |
|
|
497 | (4) |
|
25.4 Process Cost and Supply Chain Considerations |
|
|
501 | (4) |
|
|
505 | (12) |
|
|
|
505 | (1) |
|
26.2 Current 3D-LSI--New CSP Device for Sensors |
|
|
505 | (7) |
|
26.3 Future 3D-LSI Technology |
|
|
512 | (5) |
|
IV Design, Performance, and Thermal Management |
|
|
517 | (134) |
|
27 Design for 3D Integration at North Carolina State University |
|
|
519 | (10) |
|
|
|
519 | (2) |
|
27.2 Interconnect-Driven Case Studies |
|
|
521 | (4) |
|
27.3 Computer-Aided Design |
|
|
525 | (1) |
|
|
526 | (3) |
|
28 Modeling Approaches and Design Methods for 3D System Design |
|
|
529 | (46) |
|
|
|
|
529 | (1) |
|
28.2 Modeling and Simulation |
|
|
530 | (35) |
|
28.3 Design Methods for 3D Integration |
|
|
565 | (6) |
|
|
571 | (4) |
|
29 Multiproject Circuit Design and Layout in Lincoln Laboratory's 3D Technology |
|
|
575 | (8) |
|
|
|
|
|
|
|
|
575 | (1) |
|
29.2 3D Design and Layout Practice |
|
|
575 | (3) |
|
29.3 Design and Submission Procedures |
|
|
578 | (5) |
|
30 Computer-Aided Design for 3D Circuits at the University of Minnesota |
|
|
583 | (16) |
|
|
|
583 | (1) |
|
30.2 Thermal Analysis of 3D Designs |
|
|
584 | (2) |
|
30.3 Thermally-Driven Placement and Routing of 3D Designs |
|
|
586 | (8) |
|
30.4 Power Grid Design in 3D |
|
|
594 | (2) |
|
|
596 | (3) |
|
31 Electrical Performance of 3D Circuits |
|
|
599 | (24) |
|
|
|
|
599 | (8) |
|
31.2 3D Chip Stack Technology |
|
|
607 | (6) |
|
31.3 Electrical Performance of 3D Contacts |
|
|
613 | (5) |
|
31.4 Summary and Conclusion |
|
|
618 | (5) |
|
32 Testing of 3D Circuits |
|
|
623 | (12) |
|
|
|
623 | (1) |
|
32.2 Yield and 3D Integration |
|
|
624 | (3) |
|
32.3 Known Good Die (KGD) |
|
|
627 | (2) |
|
32.4 Wafer Stacking Versus Die Stacking |
|
|
629 | (3) |
|
32.5 Defect Tolerant and Fault Tolerant 3D Stacks |
|
|
632 | (3) |
|
33 Thermal Management of Vertically Integrated Packages |
|
|
635 | (16) |
|
|
|
|
635 | (2) |
|
33.2 Fundamentals of Heat Transfer |
|
|
637 | (2) |
|
33.3 Thermal-Packaging Modeling |
|
|
639 | (1) |
|
33.4 Metrology in Thermal Packaging |
|
|
640 | (1) |
|
33.5 Thermal Packaging Components |
|
|
641 | (3) |
|
33.6 Heat Removal in Vertically-Integrated Packages |
|
|
644 | (7) |
|
|
651 | (96) |
|
34 3D and Microprocessors |
|
|
653 | (22) |
|
|
|
|
653 | (1) |
|
34.2 Design of 3D Microprocessor Systems |
|
|
654 | (7) |
|
34.3 Fabrication of 3D Microprocessor Systems |
|
|
661 | (9) |
|
|
670 | (5) |
|
|
675 | (14) |
|
|
|
675 | (1) |
|
|
675 | (4) |
|
35.3 Redistribution Layer |
|
|
679 | (2) |
|
35.4 Through Wafer Interconnect |
|
|
681 | (3) |
|
|
684 | (2) |
|
|
686 | (2) |
|
35.7 Future of 3D Memories |
|
|
688 | (1) |
|
36 3D Read-Out Integrated Circuits for Advanced Sensor Arrays |
|
|
689 | (14) |
|
|
|
689 | (1) |
|
36.2 Current Activity in 3D ROICs |
|
|
690 | (10) |
|
|
700 | (3) |
|
|
703 | (20) |
|
|
|
|
|
703 | (1) |
|
37.2 Wafer Level Packaging for Discrete Semiconductor Devices |
|
|
704 | (1) |
|
37.3 Packaging for PowerMOSFET Devices |
|
|
704 | (3) |
|
37.4 Chip Size Packaging of Vertical MOSFETs |
|
|
707 | (4) |
|
37.5 Metal TWI Process for Vertical MOSFETs |
|
|
711 | (7) |
|
37.6 Further Evaluation of the TWI MOSFET CSPs |
|
|
718 | (2) |
|
|
720 | (3) |
|
38 Wireless Sensor Systems -- The e-CUBES Project |
|
|
723 | (24) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
723 | (2) |
|
|
725 | (2) |
|
38.3 Enabling 3D Integration Technologies |
|
|
727 | (4) |
|
|
731 | (4) |
|
38.5 e-CUBES Applications and Roadmap |
|
|
735 | (10) |
|
|
745 | (2) |
Conclusions |
|
747 | (2) |
|
|
|
Index |
|
749 | |