Muutke küpsiste eelistusi

Helmholtz Equation Least Squares Method: For Reconstructing and Predicting Acoustic Radiation 2015 ed. [Kõva köide]

  • Formaat: Hardback, 233 pages, kõrgus x laius: 235x155 mm, kaal: 550 g, 61 Illustrations, color; 21 Illustrations, black and white; XIII, 233 p. 82 illus., 61 illus. in color., 1 Hardback
  • Sari: Modern Acoustics and Signal Processing
  • Ilmumisaeg: 23-Sep-2014
  • Kirjastus: Springer-Verlag New York Inc.
  • ISBN-10: 1493916394
  • ISBN-13: 9781493916399
  • Kõva köide
  • Hind: 113,55 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 133,59 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Hardback, 233 pages, kõrgus x laius: 235x155 mm, kaal: 550 g, 61 Illustrations, color; 21 Illustrations, black and white; XIII, 233 p. 82 illus., 61 illus. in color., 1 Hardback
  • Sari: Modern Acoustics and Signal Processing
  • Ilmumisaeg: 23-Sep-2014
  • Kirjastus: Springer-Verlag New York Inc.
  • ISBN-10: 1493916394
  • ISBN-13: 9781493916399

This book represents the HELS (Helmholtz equation least squares) theory and its applications for visualizing acoustic radiation from an arbitrarily shaped vibrating structure in free or confined space. It culminates the most updated research work of the author and his graduate students since 1997. The book contains six chapters. The first serves as a review of the fundamentals in acoustics and the rest cover five specific topics on the HELS theory.

1 Introduction
1(10)
1.1 Conventional Noise and Vibration Diagnoses
2(1)
1.2 Holography
3(1)
1.3 Acoustical Holography
3(1)
1.4 Near-Field Acoustical Holography
4(1)
1.5 Fourier Transform-Based NAH
5(2)
1.6 Boundary Element Method-Based NAH
7(2)
1.7 Helmholtz Equation Least-Squares Method-Based NAH
9(2)
2 The Spherical Wave Functions
11(16)
2.1 The Helmholtz Equation Under the Spherical Coordinates
11(1)
2.2 Solution to R(kr)
12(4)
2.3 Solution to (θ)
16(2)
2.4 Solution to Φ(φ)
18(2)
2.5 Solution to P (r, θ, φ; ω)
20(7)
3 The Helmholtz Equation Least-Squares Method
27(36)
3.1 The HELS Formulations
28(3)
3.2 Reconstructing the Radiated Acoustic Field
31(6)
3.3 Predicting the Radiated Acoustic Field
37(5)
3.4 Error Analyses
42(4)
3.5 Regularization
46(1)
3.6 Regularization Through Truncation of the Expansion Functions
47(3)
3.7 Other Regularization Techniques
50(13)
4 Validity of the HELS Method
63(18)
4.1 Rayleigh Hypothesis
63(4)
4.2 The Rayleigh Series Versus HELS Formulations
67(2)
4.3 Justification of the HELS Formulations
69(8)
4.4 Significance of the Justification
77(4)
5 Implementation of the HELS-Based NAH
81(20)
5.1 Guidelines for Implementing the HELS Method
82(6)
5.2 Practical Considerations in Implementing the HELS Method
88(1)
5.3 Test Configuration
89(3)
5.4 Test Environment
92(4)
5.5 Clarifications
96(5)
6 Combined Helmholtz Equation Least-Squares (CHELS) Method
101(28)
6.1 The Helmholtz Integral Theory
102(7)
6.2 Nonuniqueness Difficulties
109(5)
6.3 Discrete Helmholtz Integral Formulations
114(2)
6.4 The Combined Helmholtz Equation Least-Squares Method
116(2)
6.5 Applications of the CHELS Method
118(11)
7 Hybrid NAH
129(16)
7.1 Modified HELS
129(2)
7.2 Hybrid NAH
131(3)
7.3 Reconstructing Acoustic Fields Using the Hybrid NAH
134(11)
8 Equivalent Sources Using HELS
145(18)
8.1 Localized Spherical Waves
146(1)
8.2 Distributed Spherical Waves
147(2)
8.3 Distributed Point Sources
149(1)
8.4 Regularization for LSW, DSW, and DPS Expansions
150(1)
8.5 Performances of LSW, DSW, and DPS Expansions
151(3)
8.6 Locations of the Auxiliary Sources
154(1)
8.7 Condition Number of the Transfer Matrices
155(1)
8.8 Effect of Measurement Number
156(3)
8.9 Choice of Regularization
159(4)
9 Transient HELS
163(32)
9.1 Transient Acoustic Radiation
165(6)
9.2 Residue Theorem
171(3)
9.3 Extension to Arbitrary Time-Dependent Excitations
174(2)
9.4 Transient NAH Formulations
176(19)
9.4.1 Reconstruction Through BEM-Based NAH
176(2)
9.4.2 Reconstruction Through HELS-Based NAH
178(1)
9.4.3 Transient NAH Formulations
179(1)
9.4.4 Applications of the Transient NAH Formulations
180(15)
10 Panel Acoustic Contribution Analysis Using HELS
195(26)
10.1 The HELS-Based Panel Acoustic Contribution Analysis
196(4)
10.2 Procedures for Conducting HELS-Based Panel Acoustic Contributions Analyses
200(3)
10.3 Stories of Panel Acoustic Contributions Analyses
203(18)
10.3.1 Story 1: Sound Transmission Paths
203(4)
10.3.2 Story 2: Panel Acoustic Contribution Analyses
207(5)
10.3.3 Story 3: Engine Block Noise Analyses
212(9)
References 221(8)
Index 229
Sean F. Wu received his Ph.D. from Georgia Institute of Technology, U.S.A. in 1987. He joined the Mechanical Engineering Department at Wayne State University as an Assistant Professor in 1988, was promoted to Associate Professor in 1995 and Professor in 1999, was selected in an unanimous vote as the Charles DeVlieg Professor in 2002 and appointed by the Board of Governors to the rank of University Distinguished Professor in 2005.

Dr. Wu holds the rank of Fellow in the American Society of Mechanical Engineers and the Acoustical Society of America, and serves as an Associate Editor and Express Letter Editor for the Journal of the Acoustical Society of America and Co-Editor-In-Chief for Journal of Computational Acoustics.