Muutke küpsiste eelistusi

Hierarchical Modelling for the Environmental Sciences [Kõva köide]

Edited by (, Nicholas School of the Environment, Duke University, USA), Edited by (, Institute of Statistics and Decision Sciences, Duke University, USA)
  • Formaat: Hardback, 216 pages, 73 line drawings, tables
  • Ilmumisaeg: 01-May-2006
  • Kirjastus: Oxford University Press
  • ISBN-10: 0198569661
  • ISBN-13: 9780198569664
  • Kõva köide
  • Hind: 146,25 €*
  • * saadame teile pakkumise kasutatud raamatule, mille hind võib erineda kodulehel olevast hinnast
  • See raamat on trükist otsas, kuid me saadame teile pakkumise kasutatud raamatule.
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Lisa soovinimekirja
  • Formaat: Hardback, 216 pages, 73 line drawings, tables
  • Ilmumisaeg: 01-May-2006
  • Kirjastus: Oxford University Press
  • ISBN-10: 0198569661
  • ISBN-13: 9780198569664
New Statistical tools are changing the wau in which scientists analyze and interpret data and models. Many of these are emerging as a result of the wide availability of inexpensive, high speed computational power. In particular, hierarchical Bayes and Markov Chain Monte Carlo methods for analysis provide constant framework for inference and prediction where information is heterogeneous and uncertain, processes are complex, and responses depend on scale. Nowhere are these methods more promising than in the environmental sciences. Models have developed rapidly, and there is now a requirment for a clear exposition of the methodology through to application for a range of environmental challenges.

Arvustused

'...if you are already quite well acquainted with Bayesian concepts and terminology then this book should provide an excellent guide to the application of these advanced statistical techniques within ecology.' Justin Travis, Bulletin of the British Ecological Society 2007 38:1

Preface v
Contributors ix
Part I Introduction to hierarchical modeling
1(38)
Elements of hierarchical Bayesian inference
3(22)
Bradley P. Carlin
James S. Clark
Alan E. Gelfand
Bayesian hierarchical models in geographical genetics
25(14)
Kent E. Holsinger
Part II Hierarchical models in experimental settings
39(36)
Synthesizing ecological experiments and observational data with hierarchical Bayes
41(18)
James S. Clark
Shannon LaDeau
Effects of global change on inflorescence production: a Bayesian hierarchical analysis
59(16)
Janneke Hille Ris Lambers
Brian Aukema
Jeff Diez
Margaret Evans
Andrew Latimer
Part III Spatial modeling
75(44)
Building statistical models to analyze species distributions
77(21)
Alan E. Gelfand
Andrew Latimer
Shanshan Wu
John A. Silander, Jr
Implications of vulnerability to hurricane damage for long-term survival of tropical tree species: a Bayesian hierarchical analysis
98(21)
Kiona Ogle
Maria Uriarte
Jill Thompson
Jill Johnstone
Andy Jones
Yiching Lin
Eliot J. B. McIntire
Jess K. Zimmerman
Part IV Spatio-temporal modeling
119(66)
Spatial-temporal statistical modeling and prediction of environmental processes
121(24)
Li Chen
Montserrat Fuentes
Jerry M. Davis
Hierarchical Bayesian spatio--temporal models for population spread
145(25)
Christopher K. Wikle
Mevin B. Hooten
Spatial models for the distribution of extremes
170(15)
Eric Gilleland
Douglas Nychka
Uli Schneider
References 185(12)
Index 197