Muutke küpsiste eelistusi

Imaging, Vision and Learning Based on Optimization and PDEs: IVLOPDE, Bergen, Norway, August 29 September 2, 2016 2018 ed. [Kõva köide]

Edited by , Edited by , Edited by
  • Formaat: Hardback, 255 pages, kõrgus x laius: 235x155 mm, kaal: 565 g, 67 Illustrations, color; 28 Illustrations, black and white; VIII, 255 p. 95 illus., 67 illus. in color., 1 Hardback
  • Sari: Mathematics and Visualization
  • Ilmumisaeg: 20-Nov-2018
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3319912739
  • ISBN-13: 9783319912738
  • Kõva köide
  • Hind: 48,70 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 57,29 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Hardback, 255 pages, kõrgus x laius: 235x155 mm, kaal: 565 g, 67 Illustrations, color; 28 Illustrations, black and white; VIII, 255 p. 95 illus., 67 illus. in color., 1 Hardback
  • Sari: Mathematics and Visualization
  • Ilmumisaeg: 20-Nov-2018
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3319912739
  • ISBN-13: 9783319912738
This volume presents the peer-reviewed proceedings of the international conference Imaging, Vision and Learning Based on Optimization and PDEs (IVLOPDE), held in Bergen, Norway, in August/September 2016. The contributions cover state-of-the-art research on mathematical techniques for image processing, computer vision and machine learning based on optimization and partial differential equations (PDEs).

It has become an established paradigm to formulate problems within image processing and computer vision as PDEs, variational problems or finite dimensional optimization problems. This compact yet expressive framework makes it possible to incorporate a range of desired properties of the solutions and to design algorithms based on well-founded mathematical theory. A growing body of research has also approached more general problems within data analysis and machine learning from the same perspective, and demonstrated the advantages over earlier, more established algorithms.





This volume will appeal to all mathematicians and computer scientists interested in novel techniques and analytical results for optimization, variational models and PDEs, together with experimental results on applications ranging from early image formation to high-level image and data analysis.
Part I Image Reconstruction from Incomplete Data: 1 Adaptive
Regularization for Image Reconstruction from Subsampled Data: M. Hintermüller
et al.- 2 A Convergent Fixed-Point Proximity Algorithm Accelerated by FISTA
for the l_0 Sparse Recovery Problem: X. Zeng et al.- 3 Sparse-Data Based 3D
Surface Reconstruction for Cartoon and Map: B. Wu et al.- Part II Image
Enhancement, Restoration and Registration: 4 Variational Methods for Gamut
Mapping in Cinema and Television: S. Waqas Zamir et al.- 5 Functional Lifting
for Variational Problems with Higher-Order Regularization: B. Loewenhauser et
al.- 6 On the Convex Model of Speckle Reduction: F. Fang et al.- Part III 3D
Image Understanding and Classification: 7 Multi-Dimensional Regular
Expressions for Object Detection with LiDAR Imaging: T.C. Torgersen et al.- 8
Relaxed Optimisation for Tensor Principal Component Analysis and Applications
to Recognition, Compression and Retrieval of Volumetric Shapes: H. Itoh et
al.- Part IV Machine Learning and Big Data Analysis: 9 An Incremental
Reseeding Strategy for Clustering: X. Bresson et al.- 10 Ego-Motion
Classification for Body-Worn Videos: Z. Meng et al.- 11 Synchronized Recovery
Method for Multi-Rank Symmetric Tensor Decomposition: H. Liu.- Index.