Muutke küpsiste eelistusi

Introduction to UAV Systems 5th edition [Kõva köide]

Series edited by (BAE Systems, UK), Series edited by (MIT), (Gleason Research Associates, Inc), (Daniel Webster College, USA), (UAV Manager US Army Material Command (ret)), Series edited by (University of Liverpool, UK)
  • Formaat: Hardback, 464 pages, kõrgus x laius x paksus: 259x183x33 mm, kaal: 1089 g
  • Sari: Aerospace Series
  • Ilmumisaeg: 08-Apr-2022
  • Kirjastus: John Wiley & Sons Inc
  • ISBN-10: 111980261X
  • ISBN-13: 9781119802617
Teised raamatud teemal:
  • Formaat: Hardback, 464 pages, kõrgus x laius x paksus: 259x183x33 mm, kaal: 1089 g
  • Sari: Aerospace Series
  • Ilmumisaeg: 08-Apr-2022
  • Kirjastus: John Wiley & Sons Inc
  • ISBN-10: 111980261X
  • ISBN-13: 9781119802617
Teised raamatud teemal:
Now in an updated Fifth Edition, Introduction to UAV Systems, provides a broad foundation on all aspects of Unmanned Aerial Vehicles (UAV) and Unmanned Aerial Systems (UAS). This thoroughly revised edition introduces the history, classes, and missions of UAVs, then introduces readers to key UAV topics such as aerodynamics, stability and control, propulsion, loads and structures, mission planning, payloads, and communication systems. New material is introduced to cover topics like quadcopters, navigationsystems, and ground control stations and new examples highlight the latest industry technologies. The book is an ideal introduction to the world of UAV Systems for both professionals and students, with new end-of-chapter review questions to help enhance reader comprehension and support university courses such as Unmanned Aircraft Systems Design, Introduction to Unmanned Aerial Systems, and Unmanned Aircraft System Operations.-- Introduction to UAV Systems The latest edition of the leading resource on unmanned aerial vehicle systems In the newly revised Fifth Edition of Introduction to UAV Systems, an expert team of aviators, engineers, and researchers delivers the fundamentals of UAV systems for both professionals and students in UAV courses. Suitable for students in Aerospace Engineering programs, as well as Flight and Aeronautics programs, this new edition now includes end-of-chapter questions and online instructor ancillaries that make it an ideal textbook. As the perfect complement to the author’s Design of Unmanned Aerial Systems, this book includes the history, classes, and missions of UAVs. It covers fundamental topics, like aerodynamics, stability and control, propulsion, loads and structures, mission planning, payloads, and communication systems. Brand-new materials in areas including autopilots, quadcopters, payloads, and ground control stations highlight the latest industry technologies. The authors also discuss: A thorough introduction to the history of unmanned aerial vehicles, including their use in various conflicts, an overview of critical UAV systems, and the Predator/Reaper A comprehensive exploration of the classes and missions of UAVs, including several examples of UAV systems, like Mini UAVs, UCAVs, and quadcopters Practical discussions of air vehicles, including coverage of topics like aerodynamics, flight performance, stability, and control In-depth examinations of propulsion, loads, structures, mission planning, control systems, and autonomy Perfect for professional aeronautical and aerospace engineers, as well as students and instructors in courses like Unmanned Aircraft Systems Design and Introduction to Unmanned Aerial Systems, Introduction to UAV Systems is an indispensable resource for anyone seeking coverage of the latest industry advances and technologies in UAV and UAS technology.
Preface xvii
Series Preface xxi
Acknowledgments xxiii
List of Acronyms xxv
About the Companion Website xxix
Part I Introduction 1(46)
1 History and Overview
3(24)
1.1 Overview
3(1)
1.2 History
4(4)
1.2.1 Early History
4(1)
1.2.2 The Vietnam War
4(1)
1.2.3 Resurgence
5(1)
1.2.4 Joint Operations
6(1)
1.2.5 Desert Storm
6(1)
1.2.6 Bosnia
6(1)
1.2.7 Afghanistan and Iraq
7(1)
1.2.8 Long-Range Long-Endurance Operations
7(1)
1.3 Overview of UAV Systems
8(4)
1.3.1 Air Vehicle
9(1)
1.3.2 Mission Planning and Control Station
9(1)
1.3.3 Launch and Recovery Equipment
10(1)
1.3.4 Payloads
10(1)
1.3.5 Data Links
11(1)
1.3.6 Ground Support Equipment
11(1)
1.4 The Aquila
12(4)
1.4.1 Aquila Mission and Requirements
12(1)
1.4.2 Air Vehicle
13(1)
1.4.3 Ground Control Station
13(1)
1.4.4 Launch and Recovery
14(1)
1.4.5 Payload
14(1)
1.4.6 Other Equipment
14(1)
1.4.7 Summary
14(2)
1.5 Global Hawk
16(3)
1.5.1 Mission Requirements and Development
16(1)
1.5.2 Air Vehicle
16(1)
1.5.3 Payloads
17(1)
1.5.4 Communications System
17(1)
1.5.5 Development Setbacks
18(1)
1.6 Predator Family
19(2)
1.6.1 Predator Development
19(1)
1.6.2 Reaper
19(1)
1.6.3 Features
20(1)
1.7 Top UAV Manufacturers
21(1)
1.8 Ethical Concerns of UAVs
21(1)
Questions
22(5)
2 Classes and Missions of UAVs
27(20)
2.1 Overview
27(1)
2.2 Classes of UAV Systems
27(6)
2.2.1 Classification Criteria
27(1)
2.2.2 Classification by Range and Endurance
28(1)
2.2.3 Classification by Missions
29(3)
2.2.4 The Tier System
32(1)
2.3 Examples of UAVs by Size Group
33(9)
2.3.1 Micro-UAVs
34(1)
2.3.2 Mini-UAVs
34(1)
2.3.3 Very Small UAVs
35(1)
2.3.4 Small UAVs
36(1)
2.3.5 Medium UAVs
37(3)
2.3.6 Large UAVs
40(2)
2.4 Expendable UAVs
42(1)
Questions
43(4)
Part II The Air Vehicle 47(112)
3 Aerodynamics
49(22)
3.1 Overview
49(1)
3.2 Aerodynamic Forces
49(2)
3.3 Mach Number
51(1)
3.4 Airfoil
51(3)
3.5 Pressure Distribution
54(3)
3.6 Drag Polar
57(1)
3.7 The Real Wing and Airplane
58(1)
3.8 Induced Drag
58(2)
3.9 Boundary Layer
60(3)
3.10 Friction Drag
63(1)
3.11 Total Air-Vehicle Drag
63(1)
3.12 Flapping Wings
64(2)
3.13 Aerodynamic Efficiency
66(1)
Questions
67(4)
4 Performance
71(18)
4.1 Overview
71(1)
4.2 Cruising Flight
72(1)
4.3 Range
73(5)
4.3.1 Range for a Non-Electric-Engine Propeller-Driven Aircraft
74(2)
4.3.2 Range for a Jet-Propelled Aircraft
76(2)
4.4 Endurance
78(2)
4.4.1 Endurance for a Non-Electric-Engine Propeller-Driven Aircraft
78(1)
4.4.2 Endurance for a Jet-Propelled Aircraft
79(1)
4.5 Climbing Flight
80(2)
4.6 Gliding Flight
82(1)
4.7 Launch
83(1)
4.8 Recovery
84(1)
Questions
85(4)
5 Flight Stability and Control
89(20)
5.1 Overview
89(1)
5.2 Trim
90(4)
5.2.1 Longitudinal Trim
91(2)
5.2.2 Directional Trim
93(1)
5.2.3 Lateral Trim
93(1)
5.2.4 Summary
94(1)
5.3 Stability
94(7)
5.3.1 Longitudinal Static Stability
95(2)
5.3.2 Directional Static Stability
97(2)
5.3.3 Lateral Static Stability
99(1)
5.3.4 Dynamic Stability
100(1)
5.4 Control
101(5)
5.4.1 Aerodynamic Control
101(1)
5.4.2 Pitch Control
102(2)
5.4.3 Directional Control
104(1)
5.4.4 Lateral Control
105(1)
Questions
106(3)
6 Propulsion
109(26)
6.1 Overview
109(1)
6.2 Propulsion Systems Classification
109(1)
6.3 Thrust Generation
110(1)
6.4 Powered Lift
111(3)
6.5 Sources of Power
114(8)
6.5.1 Four-Cycle Engine
115(1)
6.5.2 Two-Cycle Engine
116(2)
6.5.3 Rotary Engine
118(1)
6.5.4 Gas Turbine Engines
119(1)
6.5.5 Electric Motors
120(2)
6.6 Sources of Electric Energy
122(5)
6.6.1 Batteries
122(2)
6.6.2 Solar Cells
124(2)
6.6.3 Fuel Cells
126(1)
6.7 Power and Thrust
127(4)
6.7.1 Relation Between Power and Thrust
128(1)
6.7.2 Propeller
128(2)
6.7.3 Variations of Power and Thrust with Altitude
130(1)
Questions
131(4)
7 Air Vehicle Structures
135(24)
7.1 Overview
135(1)
7.2 Structural Members
135(4)
7.2.1 Skin
136(1)
7.2.2 Fuselage Structural Members
136(1)
7.2.3 Wing and Tail Structural Members
137(1)
7.2.4 Other Structural Members
138(1)
7.3 Basic Flight Loads
139(4)
7.4 Dynamic Loads
143(2)
7.5 Structural Materials
145(1)
7.5.1 Overview
145(1)
7.5.2 Aluminum
145(1)
7.6 Composite Materials
146(2)
7.6.1 Sandwich Construction
146(1)
7.6.2 Skin or Reinforcing Materials
147(1)
7.6.3 Resin Materials
147(1)
7.6.4 Core Materials
148(1)
7.7 Construction Techniques
148(1)
7.8 Basic Structural Calculations
149(6)
7.8.1 Normal and Shear Stress
150(2)
7.8.2 Deflection
152(1)
7.8.3 Buckling Load
153(1)
7.8.4 Factor of Safety
154(1)
7.8.5 Structural Fatigue
155(1)
Questions
155(4)
Part III Mission Planning and Control 159(54)
8 Mission Planning and Control Station
161(22)
8.1 Introduction
161(1)
8.2 MPCS Subsystems
161(4)
8.3 MPCS Physical Configuration
165(4)
8.4 MPCS Interfaces
169(1)
8.5 MPCS Architecture
170(4)
8.5.1 Fundamentals
170(2)
8.5.2 Local Area Networks
172(1)
8.5.3 Levels of Communication
172(1)
8.5.4 Bridges and Gateways
173(1)
8.6 Elements of a LAN
174(1)
8.6.1 Layout and Logical Structure (Topology)
174(1)
8.6.2 Communications Medium
175(1)
8.6.3 Network Transmission and Access
175(1)
8.7 OSI Standard
175(1)
8.7.1 Physical Layer
175(1)
8.7.2 Data-Link Layer
175(1)
8.7.3 Network Layer
176(1)
8.7.4 Transport Layer
176(1)
8.7.5 Session Layer
176(1)
8.7.6 Presentation Layer
176(1)
8.7.7 Application Layer
176(1)
8.8 Mission Planning
176(3)
8.9 Pilot-In-Command
179(1)
Questions
180(3)
9 Control of Air Vehicle and Payload
183(30)
9.1 Overview
183(1)
9.2 Levels of Control
184(1)
9.3 Remote Piloting the Air Vehicle
185(5)
9.3.1 Remote Manual Piloting
186(2)
9.3.2 Autopilot-Assisted Control
188(1)
9.3.3 Complete Automation
188(1)
9.3.4 Summary
189(1)
9.4 Autopilot
190(6)
9.4.1 Fundamental
190(1)
9.4.2 Autopilot Categories
191(1)
9.4.3 Inner and Outer Loops
191(1)
9.4.4 Overall Modes of Operation
192(1)
9.4.5 Control Process
193(1)
9.4.6 Control Axes
193(1)
9.4.7 Controller
194(1)
9.4.8 Actuator
195(1)
9.4.9 Open-Source Commercial Autopilots
195(1)
9.5 Sensors Supporting the Autopilot
196(3)
9.5.1 Altimeter
196(1)
9.5.2 Airspeed Sensor
196(1)
9.5.3 Attitude Sensors
197(1)
9.5.4 GPS
198(1)
9.5.5 Accelerometers
199(1)
9.6 Navigation and Target Location
199(2)
9.7 Controlling Payloads
201(3)
9.7.1 Signal Relay Payloads
202(1)
9.7.2 Atmospheric, Radiological, and Environmental Monitoring
202(1)
9.7.3 Imaging and Pseudo-Imaging Payloads
203(1)
9.8 Controlling the Mission
204(2)
9.9 Autonomy
206(2)
Questions
208(5)
Part IV Payloads 213(78)
10 Reconnaissance/Surveillance Payloads
215(32)
10.1 Overview
215(1)
10.2 Imaging Sensors
216(1)
10.3 Target Detection, Recognition, and Identification
217(14)
10.3.1 Sensor Resolution
218(3)
10.3.2 Target Contrast
221(1)
10.3.3 Transmission Through the Atmosphere
222(3)
10.3.4 Target Signature
225(1)
10.3.5 Display Characteristics
225(1)
10.3.6 Range Prediction Procedure
226(2)
10.3.7 A Few Considerations
228(2)
10.3.8 Pitfalls
230(1)
10.4 The Search Process
231(6)
10.4.1 Types of Search
231(1)
10.4.2 Field of View
232(2)
10.4.3 Search Pattern
234(1)
10.4.4 Search Time
235(2)
10.5 Other Considerations
237(6)
10.5.1 Location and Installation
237(1)
10.5.2 Stabilization of the Line of Sight
238(1)
10.5.3 Gyroscope and Gimbal
238(2)
10.5.4 Gimbal-Gyro Configuration
240(1)
10.5.5 Thermal Design
241(1)
10.5.6 Environmental Conditions Affecting Stabilization
241(1)
10.5.7 Boresight
242(1)
10.5.8 Stabilization Design
242(1)
Questions
243(4)
11 Weapon Payloads
247(30)
11.1 Overview
247(2)
11.2 History of Lethal Unmanned Aircraft
249(2)
11.3 Mission Requirements for Armed Utility UAVs
251(1)
11.4 Design Issues Related to Carriage and Delivery of Weapons
252(6)
11.4.1 Payload Capacity
253(1)
11.4.2 Structural Issues
253(2)
11.4.3 Electrical Interfaces
255(1)
11.4.4 Electromagnetic Interference
256(1)
11.4.5 Launch Constraints for Legacy Weapons
257(1)
11.4.6 Safe Separation
257(1)
11.4.7 Data Links
258(1)
11.4.8 Payload Location
258(1)
11.5 Signature Reduction
258(12)
11.5.1 Acoustical Signatures
259(4)
11.5.2 Visual Signatures
263(1)
11.5.3 Infrared Signatures
264(1)
11.5.4 Radar Signatures
265(4)
11.5.5 Emitted Signals
269(1)
11.5.6 Active Susceptibility Reduction Measures
269(1)
11.6 Autonomy for Weapon Payloads
270(3)
11.6.1 Fundamental Concept
270(2)
11.6.2 Rules of Engagement
272(1)
Questions
273(4)
12 Other Payloads
277(14)
12.1 Overview
277(1)
12.2 Radar
277(3)
12.2.1 General Radar Considerations
277(3)
12.2.2 Synthetic Aperture Radar
280(1)
12.3 Electronic Warfare
280(1)
12.4 Chemical Detection
281(1)
12.5 Nuclear Radiation Sensors
282(1)
12.6 Meteorological and Environmental Sensors
282(1)
12.7 Pseudo-Satellites
283(3)
12.8 Robotic Arm
286(1)
12.9 Package and Cargo
287(1)
12.10 Urban Air Mobility
288(1)
Questions
288(3)
Part V Data Links 291(72)
13 Data Link Functions and Attributes
293(22)
13.1 Overview
293(1)
13.2 Background
293(2)
13.3 Data-Link Functions
295(1)
13.4 Desirable Data-Link Attributes
296(6)
13.4.1 Worldwide Availability
297(1)
13.4.2 Resistance to Unintentional Interference
298(1)
13.4.3 Low Probability of Intercept (LPI)
298(1)
13.4.4 Security
298(1)
13.4.5 Resistance to Deception
299(1)
13.4.6 Anti-ARM
299(1)
13.4.7 Anti-Jam
300(1)
13.4.8 Digital Data Links
301(1)
13.4.9 Signal Strength
301(1)
13.5 System Interface Issues
302(5)
13.5.1 Mechanical and Electrical
302(1)
13.5.2 Data-Rate Restrictions
302(1)
13.5.3 Control-Loop Delays
303(2)
13.5.4 Interoperability, Interchangeability, and Commonality
305(2)
13.6 Antennas
307(2)
13.6.1 Omnidirectional Antenna
307(1)
13.6.2 Parabolic Reflectors
307(1)
13.6.3 Array/Directional Antennas
308(1)
13.6.4 Lens Antennas
308(1)
13.7 Data Link Frequency
309(2)
Questions
311(4)
14 Data-Link Margin
315(28)
14.1 Overview
315(1)
14.2 Sources of Data-Link Margin
316(11)
14.2.1 Transmitter Power
316(1)
14.2.2 Antenna Gain
316(6)
14.2.3 Processing Gain
322(5)
14.3 Anti-Jam Margin
327(7)
14.3.1 Definition of Anti-Jam Margin
327(1)
14.3.2 Jammer Geometry
328(3)
14.3.3 System Implications of AJ Capability
331(3)
14.3.4 Anti-Jam Uplinks
334(1)
14.4 Propagation
334(2)
14.4.1 Obstruction of the Propagation Path
334(2)
14.4.2 Atmospheric Absorption
336(1)
14.4.3 Precipitation Losses
336(1)
14.5 Data-Link Signal-to-Noise Budget
336(3)
Questions
339(4)
15 Data-Rate Reduction
343(14)
15.1 Overview
343(1)
15.2 Compression Versus Truncation
343(1)
15.3 Video Data
344(8)
15.3.1 Gray Scale
344(1)
15.3.2 Encoding of Gray Scale
345(1)
15.3.3 Effects of Bandwidth Compression on Operator Performance
346(2)
15.3.4 Frame Rate
348(1)
15.3.5 Control Loop Mode
348(2)
15.3.6 Forms of Truncation
350(1)
15.3.7 Summary
351(1)
15.4 Non-Video Data
352(1)
15.5 Location of the Data-Rate Reduction Function
353(1)
Questions
354(3)
16 Data-Link Tradeoffs
357(6)
16.1 Overview
357(1)
16.2 Basic Tradeoffs
357(2)
16.3 Pitfalls of "Putting Off" Data-Link Issues
359(1)
16.4 Future Technology
360(1)
Questions
360(3)
Part VI Launch and Recovery 363(56)
17 Launch Systems
365(18)
17.1 Overview
365(1)
17.2 Conventional Takeoff
365(1)
17.3 Basic Considerations
366(4)
17.4 Launch Methods for Fixed-Wing Air Vehicles
370(6)
17.4.1 Overview
370(2)
17.4.2 Rail Launchers
372(1)
17.4.3 Pneumatic Launchers
373(1)
17.4.4 Hydraulic-Pneumatic Launchers
374(1)
17.4.5 Zero Length RATO Launch of UAVs
375(1)
17.4.6 Tube Launch
375(1)
17.5 Rocket-Assisted Takeoff
376(3)
17.5.1 RATO Configuration
376(1)
17.5.2 Ignition Systems
376(1)
17.5.3 Expended RATO Separation
376(1)
17.5.4 Other Launch Equipment
377(1)
17.5.5 Energy (Impulse) Required
377(1)
17.5.6 Propellant Weight Required
378(1)
17.5.7 Thrust, Burning Time, and Acceleration
379(1)
17.6 Vertical Takeoff
379(1)
Questions
379(4)
18 Recovery Systems
383(14)
18.1 Overview
383(1)
18.2 Conventional Landing
383(1)
18.3 Vertical Net Systems
384(1)
18.4 Parachute Recovery
385(1)
18.5 VTOL UAVs
386(2)
18.6 Mid-Air Retrieval
388(1)
18.7 Shipboard Recovery
389(3)
18.8 Break-Apart Landing
392(1)
18.9 Skid and Belly Landing
393(1)
18.10 Suspended Cables
394(1)
Questions
395(2)
19 Launch and Recovery Tradeoffs
397(8)
19.1 UAV Launch Method Tradeoffs
397(3)
19.2 Recovery Method Tradeoffs
400(2)
19.3 Overall Conclusions
402(1)
Questions
402(3)
20 Rotary-Wing UAVs and Quadcopters
405(14)
20.1 Overview
405(1)
20.2 Rotary-Wing Configurations
406(3)
20.2.1 Single Rotor
406(1)
20.2.2 Twin Co-axial Rotors
407(1)
20.2.3 Twin Tandem Rotors
408(1)
20.2.4 Multicopters
408(1)
20.3 Hybrid UAVs
409(2)
20.3.1 Tilt Rotor
409(1)
20.3.2 Tilt Wing
409(1)
20.3.3 Thrust Vectoring
410(1)
20.3.4 Fixed-Wing Quadcopter Combination
410(1)
20.4 Quadcopters
411(5)
20.4.1 Overview
411(2)
20.4.2 Aerodynamics
413(1)
20.4.3 Control
414(2)
Questions
416(3)
References 419(2)
Index 421
The late Paul Fahlstrom was a Naval Aviator (Marine Pilot) who held positions at NASA's Goddard Space Flight Center and the Department of Transportation.

The late Thomas Gleason, PhD, was Founder of Gleason Research Associates, an engineering and scientific analysis firm conducting evaluations related to missile and sensor systems.

Mohammad H. Sadraey is Associate Professor of Aeronautical Engineering at Southern New Hampshire University. He has authored five books, including Aircraft Design: A Systems Engineering Approach and Aircraft Performance Analysis.