Muutke küpsiste eelistusi

Knowledge Science, Engineering and Management: 15th International Conference, KSEM 2022, Singapore, August 68, 2022, Proceedings, Part II 1st ed. 2022 [Pehme köide]

Edited by , Edited by , Edited by , Edited by , Edited by
  • Formaat: Paperback / softback, 701 pages, kõrgus x laius: 235x155 mm, kaal: 1086 g, 195 Illustrations, color; 31 Illustrations, black and white; XV, 701 p. 226 illus., 195 illus. in color., 1 Paperback / softback
  • Sari: Lecture Notes in Artificial Intelligence 13369
  • Ilmumisaeg: 31-Jul-2022
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3031109856
  • ISBN-13: 9783031109850
  • Pehme köide
  • Hind: 104,29 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 122,69 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 701 pages, kõrgus x laius: 235x155 mm, kaal: 1086 g, 195 Illustrations, color; 31 Illustrations, black and white; XV, 701 p. 226 illus., 195 illus. in color., 1 Paperback / softback
  • Sari: Lecture Notes in Artificial Intelligence 13369
  • Ilmumisaeg: 31-Jul-2022
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3031109856
  • ISBN-13: 9783031109850
The three-volume sets constitute the refereed proceedings of the 15th International Conference on Knowledge Science, Engineering and Management, KSEM 2022, held in Singapore, during August 6–8, 2022. 

The 169 full papers presented in these proceedings were carefully reviewed and selected from 498 submissions. The papers are organized in the following topical sections:

Volume I:
Knowledge Science with Learning and AI (KSLA)

Volume II:
Knowledge Engineering Research and Applications (KERA)

Volume III:
Knowledge Management with Optimization and Security (KMOS)

?Knowledge Engineering Research and Applications (KERA).- Multi-View Heterogeneous Network Embedding.- A Multi-level Attention-based LSTM Network for Ultra-short-term Solar Power Forecast using Meteorological Knowledge.- Unsupervised Person Re-ID via Loose-Tight Alternate Clustering.- Sparse Dense Transformer Network for Video Action Recognition.- Deep User Multi-Interest Network for Click-Through Rate Prediction.- Open Relation Extraction via Query-based Span Prediction.- Relational Triple Extraction with Relation-Attentive Contextual Semantic Representations.- Mario Fast Learner: Fast and Efficient solutions for Super Mario Bros.- Few-shot Learning with Self-supervised Classifier for Complex Knowledge Base Question Answering.- Data-driven Approach for Investigation of Irradiation Hardening Behavior of RAFM Steel.- Deep-to-bottom Weights Decay: A Systemic Knowledge Review Learning Technique for Transformer Layers in Knowledge Distillation.- Topic and Reference Guided Keyphrase Generation from Social Media.- DISEL: A Language for Specifying DIS-based Ontologies.- MSSA-FL:High-Performance Multi-Stage Semi-Asynchronous Federated Learning with Non-IID Data.- A GAT-based Chinese Text Classification Model: Using of Redical Guidance and Association Between Characters Across Sentences.- Incorporating Explanation to Balance the Exploration and Exploitation of Deep Reinforcement Learning.