Muutke küpsiste eelistusi

E-raamat: Knowledge Science, Engineering and Management: 15th International Conference, KSEM 2022, Singapore, August 6-8, 2022, Proceedings, Part II

Edited by , Edited by , Edited by , Edited by , Edited by
  • Formaat - EPUB+DRM
  • Hind: 122,88 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The three-volume sets constitute the refereed proceedings of the 15th International Conference on Knowledge Science, Engineering and Management, KSEM 2022, held in Singapore, during August 6–8, 2022. 

The 169 full papers presented in these proceedings were carefully reviewed and selected from 498 submissions. The papers are organized in the following topical sections:

Volume I:
Knowledge Science with Learning and AI (KSLA)

Volume II:
Knowledge Engineering Research and Applications (KERA)

Volume III:
Knowledge Management with Optimization and Security (KMOS)

?Knowledge Engineering Research and Applications (KERA).- Multi-View Heterogeneous Network Embedding.- A Multi-level Attention-based LSTM Network for Ultra-short-term Solar Power Forecast using Meteorological Knowledge.- Unsupervised Person Re-ID via Loose-Tight Alternate Clustering.- Sparse Dense Transformer Network for Video Action Recognition.- Deep User Multi-Interest Network for Click-Through Rate Prediction.- Open Relation Extraction via Query-based Span Prediction.- Relational Triple Extraction with Relation-Attentive Contextual Semantic Representations.- Mario Fast Learner: Fast and Efficient solutions for Super Mario Bros.- Few-shot Learning with Self-supervised Classifier for Complex Knowledge Base Question Answering.- Data-driven Approach for Investigation of Irradiation Hardening Behavior of RAFM Steel.- Deep-to-bottom Weights Decay: A Systemic Knowledge Review Learning Technique for Transformer Layers in Knowledge Distillation.- Topic and Reference Guided Keyphrase Generation from Social Media.- DISEL: A Language for Specifying DIS-based Ontologies.- MSSA-FL:High-Performance Multi-Stage Semi-Asynchronous Federated Learning with Non-IID Data.- A GAT-based Chinese Text Classification Model: Using of Redical Guidance and Association Between Characters Across Sentences.- Incorporating Explanation to Balance the Exploration and Exploitation of Deep Reinforcement Learning.