Preface |
|
xi | |
Authors |
|
xiii | |
1 General Introductory Topics |
|
1 | (38) |
|
Part 1: Fundamental Mathematics |
|
|
1 | (15) |
|
|
1 | (2) |
|
|
3 | (1) |
|
|
3 | (1) |
|
|
3 | (1) |
|
|
4 | (1) |
|
|
4 | (1) |
|
|
5 | (1) |
|
|
6 | (2) |
|
Discrete Fourier Transform |
|
|
8 | (1) |
|
|
9 | (2) |
|
Method of Least-Squares Fit for Multiple Parameters |
|
|
10 | (1) |
|
Nyquist-Shannon Sampling Theorem |
|
|
11 | (1) |
|
|
11 | (2) |
|
|
13 | (1) |
|
|
14 | (1) |
|
Statistical Distribution Functions |
|
|
15 | (1) |
|
Part 2: Fundamental Biology |
|
|
16 | (21) |
|
Basic Biological Concepts |
|
|
16 | (24) |
|
|
17 | (17) |
|
|
34 | (3) |
|
|
37 | (2) |
2 Optics Components and Electronic Equipment |
|
39 | (34) |
|
|
40 | (3) |
|
|
40 | (1) |
|
|
41 | (1) |
|
Compound Lenses and Arrays |
|
|
41 | (2) |
|
Maintenance and Care of Optical Lenses |
|
|
43 | (3) |
|
|
44 | (1) |
|
|
44 | (1) |
|
|
44 | (1) |
|
|
45 | (1) |
|
|
46 | (1) |
|
|
46 | (7) |
|
|
47 | (1) |
|
|
47 | (1) |
|
|
48 | (2) |
|
|
49 | (1) |
|
|
49 | (1) |
|
|
50 | (1) |
|
|
50 | (1) |
|
|
50 | (1) |
|
|
51 | (2) |
|
|
52 | (1) |
|
|
53 | (3) |
|
|
53 | (2) |
|
Single-Mode and Multimode Fibers |
|
|
55 | (1) |
|
|
55 | (1) |
|
|
56 | (7) |
|
|
56 | (1) |
|
|
56 | (1) |
|
|
57 | (1) |
|
|
58 | (1) |
|
|
58 | (4) |
|
|
62 | (1) |
|
|
62 | (1) |
|
|
62 | (1) |
|
|
63 | (1) |
|
|
63 | (2) |
|
|
64 | (1) |
|
|
64 | (1) |
|
|
65 | (1) |
|
|
66 | (5) |
|
|
66 | (1) |
|
|
67 | (2) |
|
|
69 | (1) |
|
|
69 | (1) |
|
|
70 | (1) |
|
Electrical and Light Safety |
|
|
71 | (2) |
|
|
71 | (1) |
|
|
71 | (2) |
3 Fundamental Light-Tissue Interactions: Light Scattering and Absorption |
|
73 | (46) |
|
Principles of Light Scattering and Absorption |
|
|
73 | (1) |
|
Refractive Index of Biological Tissue |
|
|
74 | (4) |
|
Basics of Theory of Light Scattering and Absorption |
|
|
78 | (7) |
|
Scattering and Absorption of Light in Tissue by Small Particles |
|
|
85 | (14) |
|
|
99 | (18) |
|
Laboratory 1: Absorption: Measurement of Hemoglobin Concentration |
|
|
100 | (1) |
|
|
100 | (5) |
|
|
100 | (1) |
|
|
101 | (2) |
|
|
103 | (1) |
|
|
103 | (1) |
|
|
104 | (1) |
|
|
105 | (1) |
|
|
105 | (1) |
|
|
106 | (1) |
|
Laboratory 2: Biomedical Application of Absorption Measurements |
|
|
106 | (3) |
|
Laboratory 3: Scattering: Measurement of Structure |
|
|
109 | (6) |
|
Attenuation and Anisotropy of Scattering |
|
|
109 | (1) |
|
|
110 | (1) |
|
|
110 | (1) |
|
|
110 | (1) |
|
|
111 | (1) |
|
Backscattering Cross-Section Spectra |
|
|
111 | (2) |
|
|
113 | (1) |
|
|
114 | (1) |
|
|
114 | (1) |
|
|
115 | (1) |
|
Laboratory 4: Biomedical Application of Scattering Measurements |
|
|
115 | (2) |
|
|
117 | (2) |
4 Microscopic Tissue Imaging |
|
119 | (58) |
|
Principles of Optical Microscopy |
|
|
119 | (5) |
|
Types of Contrast in Microscopy |
|
|
124 | (10) |
|
|
124 | (6) |
|
Spectral Contrast: Scattering |
|
|
130 | (1) |
|
Spectral Contrast: Fluorescence |
|
|
131 | (2) |
|
Spectral Contrast: Nonlinear Scattering |
|
|
133 | (1) |
|
Depth Sectioning in Microscopy |
|
|
134 | (4) |
|
|
138 | (28) |
|
Laboratory 1: Overview of the Microscope: Kohler Illumination |
|
|
138 | (4) |
|
|
138 | (2) |
|
Materials and Sample Preparation |
|
|
140 | (1) |
|
|
140 | (1) |
|
|
141 | (1) |
|
Laboratory 2: Contrasts in Microscopy |
|
|
142 | (3) |
|
|
142 | (1) |
|
|
142 | (1) |
|
|
142 | (1) |
|
|
142 | (1) |
|
|
143 | (1) |
|
Materials and Sample Preparation |
|
|
143 | (1) |
|
|
144 | (1) |
|
|
145 | (1) |
|
Laboratory 3: Build Your Own Microscope |
|
|
145 | (5) |
|
|
145 | (1) |
|
|
146 | (1) |
|
|
147 | (3) |
|
Laboratory 4: Interference-Based Imaging |
|
|
150 | (5) |
|
|
151 | (1) |
|
Materials and Sample Preparation |
|
|
152 | (1) |
|
|
152 | (2) |
|
|
154 | (1) |
|
Confocal Light Absorption and Scattering Spectroscopic Microscopy |
|
|
155 | (1) |
|
|
155 | (1) |
|
Light Scattering Spectroscopy for the Determination of Particle Size |
|
|
156 | (1) |
|
Effect of Objective Lens on LSS |
|
|
157 | (1) |
|
Laboratory 5: Experimental Observation of LSS and Effect of Finite NA on LSS Spectrum |
|
|
158 | (1) |
|
Laboratory 6: Spectroscopic Microscopy and Thin-Film Interference |
|
|
159 | (7) |
|
|
160 | (1) |
|
Thin-Film Interference Basics: Recovering Film Properties from Spectrum (Normal Incidence) |
|
|
161 | (1) |
|
Slab with Inhomogeneous Refractive Index |
|
|
162 | (3) |
|
Backscattering in Three-Dimensional Media |
|
|
165 | (1) |
|
|
166 | (7) |
|
|
166 | (1) |
|
|
166 | (4) |
|
Experiment 1: Thin-Film Interference Observed from Microspheres |
|
|
167 | (1) |
|
Experiment 2: Interference Spectrum from an Inhomogeneous Film of Nanospheres |
|
|
168 | (1) |
|
Experiment 3: Interference Spectrum from a Biological Cell as an Inhomogeneous Film |
|
|
169 | (1) |
|
|
170 | (1) |
|
Experiment 1: Data Analysis |
|
|
170 | (1) |
|
Experiment 2: Sample Preparation |
|
|
170 | (1) |
|
|
171 | (1) |
|
Laboratory 7: Measurement of Real and Imaginary Refractive Index of Cells |
|
|
171 | (2) |
|
|
171 | (1) |
|
Relationship between the Real and Imaginary Parts of the Refractive Index |
|
|
172 | (1) |
|
|
173 | (2) |
|
|
173 | (1) |
|
|
173 | (1) |
|
|
173 | (1) |
|
|
174 | (1) |
|
|
174 | (1) |
|
|
175 | (2) |
5 Tissue Spectroscopy |
|
177 | (60) |
|
Light Transport in a Medium with Continuously Varying Refractive Index |
|
|
178 | (4) |
|
|
178 | (1) |
|
Differential Scattering Cross-Section |
|
|
179 | (1) |
|
Modeling Continuous Media with a Whittle-Matern Correlation Function |
|
|
179 | (3) |
|
|
182 | (1) |
|
Phase Function-Corrected Diffusion Approximation |
|
|
182 | (11) |
|
|
182 | (1) |
|
Transport Equation for the Phase Function-Corrected Radiance |
|
|
183 | (5) |
|
Derivation of the Phase Function-Corrected Radiance, Fluence Rate, and Reflectance |
|
|
188 | (2) |
|
Accuracy of the Phase Function-Corrected Diffusion Approximation |
|
|
190 | (1) |
|
Physical Interpretation of the Phase Function-Corrected Radiance |
|
|
191 | (1) |
|
Summary and Concluding Remarks |
|
|
191 | (2) |
|
Laboratory 1: Building a Spectrometer |
|
|
193 | (3) |
|
|
194 | (1) |
|
|
194 | (1) |
|
|
195 | (1) |
|
|
196 | (1) |
|
|
196 | (1) |
|
Laboratory 2: Diffuse Reflectance Spectroscopy |
|
|
196 | (4) |
|
Measurement of Optical Properties |
|
|
196 | (1) |
|
|
197 | (1) |
|
|
197 | (1) |
|
|
198 | (1) |
|
|
199 | (1) |
|
|
200 | (1) |
|
Laboratory 3: Measurement of Optical Properties of Tissue Using Spectroscopic Optical Coherence Tomography |
|
|
200 | (7) |
|
|
200 | (4) |
|
|
204 | (1) |
|
|
204 | (1) |
|
|
204 | (2) |
|
|
206 | (1) |
|
|
206 | (1) |
|
Laboratory 4: Depth-Selective Tissue Spectroscopy: Measuring Reflectance Impulse Response Function by Using Enhanced Backscattering |
|
|
207 | (16) |
|
Enhanced Backscattering: An Introduction |
|
|
207 | (1) |
|
|
207 | (3) |
|
|
210 | (5) |
|
Effects of Partial Spatial Coherence Illumination and Finite Illumination Spot Size on EBS |
|
|
215 | (5) |
|
|
220 | (1) |
|
Penetration Depth and Measurement of Optical Properties Using Low-Coherence EBS |
|
|
220 | (3) |
|
|
223 | (4) |
|
|
223 | (2) |
|
|
225 | (2) |
|
Laboratory 5: Depth-Selective Tissue Spectroscopy: Polarization-Gated Spectroscopy |
|
|
227 | (3) |
|
|
230 | (2) |
|
|
230 | (1) |
|
|
231 | (1) |
|
|
231 | (1) |
|
|
232 | (1) |
|
|
232 | (1) |
|
|
232 | (5) |
6 Computational Biophotonics |
|
237 | (52) |
|
Overview of Computational Biophotonics Methods |
|
|
237 | (7) |
|
Laboratory 1: Designing a Spherical Particle Suspension to Mimic Scattering Properties |
|
|
244 | (8) |
|
|
244 | (1) |
|
|
245 | (1) |
|
|
245 | (7) |
|
Use Mie Code to Calculate qsca and g of a Microsphere |
|
|
245 | (1) |
|
Calculate Scattering Coefficient mus and Reduced Scattering Coefficient mus' |
|
|
245 | (1) |
|
|
246 | (1) |
|
Local Fit for the Power Law |
|
|
247 | (1) |
|
Refractive Index and Dispersion |
|
|
247 | (1) |
|
|
247 | (1) |
|
|
248 | (1) |
|
Plot the Refractive Index Correlation Function of a Sphere Suspension |
|
|
249 | (1) |
|
Use the Born Approximation to Calculate the Scattering Properties of a Sphere Suspension |
|
|
249 | (1) |
|
Calculate the Refractive Index Correlation Function of a Sphere Mixture |
|
|
250 | (1) |
|
Write a Script to Optimize a Sphere Mixture to Mimic a Mass Fractal Dimension Df over the Visible Spectrum |
|
|
250 | (2) |
|
Laboratory 2: Generalized Multiparticle Mie Algorithm |
|
|
252 | (6) |
|
|
252 | (2) |
|
|
254 | (13) |
|
|
254 | (1) |
|
|
254 | (1) |
|
|
254 | (3) |
|
|
257 | (1) |
|
|
258 | (1) |
|
Laboratory 3: Monte Carlo Simulations of Radiative Transport: Modeling Radial Probability Distribution from a Semi-Infinite Medium and Comparison with the Diffusion Approximation |
|
|
258 | (9) |
|
Monte Carlo Simulation Algorithm |
|
|
259 | (6) |
|
|
265 | (2) |
|
Laboratory 4: The Finite-Difference Time-Domain Method in Computational Biophotonics |
|
|
267 | (14) |
|
|
268 | (1) |
|
Introduction to the FDTD Method |
|
|
268 | (1) |
|
Angora: An Open-Source FDTD Software Package |
|
|
269 | (3) |
|
|
270 | (1) |
|
Compilation and Installation |
|
|
270 | (1) |
|
Running Simulations with Angora |
|
|
271 | (1) |
|
|
272 | (9) |
|
|
272 | (5) |
|
Scattering of Light from a Sphere: The Lorenz-Mie Solution |
|
|
277 | (4) |
|
Laboratory 5: Modeling Random Refractive Index Distribution in Tissue: Creating Random Volumes with Specified Covariance |
|
|
281 | (5) |
|
|
282 | (1) |
|
|
283 | (3) |
|
|
286 | (3) |
Index |
|
289 | |