Muutke küpsiste eelistusi

E-raamat: Laboratory Manual in Biophotonics

(Northwestern University, Evanston, Illinois, USA), ,
  • Formaat: 319 pages
  • Ilmumisaeg: 15-May-2018
  • Kirjastus: CRC Press Inc
  • Keel: eng
  • ISBN-13: 9781498744331
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 64,99 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 319 pages
  • Ilmumisaeg: 15-May-2018
  • Kirjastus: CRC Press Inc
  • Keel: eng
  • ISBN-13: 9781498744331
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Biophotonics is a burgeoning field that has afforded researchers and medical practitioners alike an invaluable tool for implementing optical microscopy. Recent advances in research have enabled scientists to measure and visualize the structural composition of cells and tissue while generating applications that aid in the detection of diseases such as cancer, Alzheimers, and atherosclerosis. Rather than divulge a perfunctory glance into the field of biophotonics, this textbook aims to fully immerse senior undergraduates, graduates, and research professionals in the fundamental knowledge necessary for acquiring a more advanced awareness of concepts and pushing the field beyond its current boundaries. The authors furnish readers with a pragmatic, quantitative, and systematic view of biophotonics, engaging such topics as light-tissue interaction, the use of optical instrumentation, and formulating new methods for performing analysis. Designed for use in classroom lectures, seminars, or professional laboratories, the inclusion and incorporation of this textbook can greatly benefit readers as it serves as a comprehensive introduction to current optical techniques used in biomedical applications.











Caters to the needs of graduate and undergraduate students as well as R&D professionals engaged in biophotonics research.





Guides readers in the field of biophotonics, beginning with basic concepts before proceeding to more advanced topics and applications.





Serves as a primary text for attaining an in-depth, systematic view of principles and applications related to biophotonics.





Presents a quantitative overview of the fundamentals of biophotonic technologies.





Equips readers to apply fundamentals to practical aspects of biophotonics.
Preface xi
Authors xiii
1 General Introductory Topics 1(38)
Part 1: Fundamental Mathematics
1(15)
Dirac Delta Pulse
1(2)
Kronecker Delta Pulse
3(1)
Kronecker Comb
3(1)
sinc Function
3(1)
Convolution
4(1)
Cross-Correlation
4(1)
Autocorrelation
5(1)
Fourier Transform
6(2)
Discrete Fourier Transform
8(1)
Least-Squares Fit
9(2)
Method of Least-Squares Fit for Multiple Parameters
10(1)
Nyquist-Shannon Sampling Theorem
11(1)
Basic Statistics
11(2)
Student's t-Test
13(1)
Speckle Contrast
14(1)
Statistical Distribution Functions
15(1)
Part 2: Fundamental Biology
16(21)
Basic Biological Concepts
16(24)
Cell Structure
17(17)
Tissue Structure
34(3)
References
37(2)
2 Optics Components and Electronic Equipment 39(34)
Lenses
40(3)
Convex Lenses
40(1)
Concave Lenses
41(1)
Compound Lenses and Arrays
41(2)
Maintenance and Care of Optical Lenses
43(3)
Handling
44(1)
Storage
44(1)
Cleaning and Maintenance
44(1)
Waveplate
45(1)
Linear Polarizers
46(1)
Mirrors
46(7)
Plane Mirror
47(1)
Convex Mirror
47(1)
Concave Mirror
48(2)
Optical Coating
49(1)
Metal Coatings
49(1)
Antireflection Coatings
50(1)
High-Reflection Coatings
50(1)
Filters
50(1)
Prisms
51(2)
Combination Prisms
52(1)
Optical Fibers
53(3)
Structure
53(2)
Single-Mode and Multimode Fibers
55(1)
Fiber Connectors
55(1)
Optomechanical Equipment
56(7)
Optical Table
56(1)
Translational Stages
56(1)
Rotation Stages
57(1)
Mirror Mounts
58(1)
Lasers
58(4)
Photodetectors
62(1)
Photodiodes
62(1)
Phototransistors
62(1)
Photomultiplier Tubes
63(1)
Charge-Coupled Devices
63(2)
Power Meter
64(1)
Spectrometers
64(1)
Electrical Equipment
65(1)
Data Acquisition System
66(5)
Amplifiers
66(1)
Digitizer
67(2)
Signal Generation
69(1)
Power Supply
69(1)
Function Generator
70(1)
Electrical and Light Safety
71(2)
Electrical Safety
71(1)
Light Safety
71(2)
3 Fundamental Light-Tissue Interactions: Light Scattering and Absorption 73(46)
Principles of Light Scattering and Absorption
73(1)
Refractive Index of Biological Tissue
74(4)
Basics of Theory of Light Scattering and Absorption
78(7)
Scattering and Absorption of Light in Tissue by Small Particles
85(14)
Lab Discussion
99(18)
Laboratory 1: Absorption: Measurement of Hemoglobin Concentration
100(1)
Laboratory Protocol
100(5)
Instrumentation
100(1)
LED Sources
101(2)
Lenses
103(1)
Detectors
103(1)
Mechanical Design
104(1)
Sample Preparation
105(1)
Experiment
105(1)
Data Analysis
106(1)
Laboratory 2: Biomedical Application of Absorption Measurements
106(3)
Laboratory 3: Scattering: Measurement of Structure
109(6)
Attenuation and Anisotropy of Scattering
109(1)
Instrumentation
110(1)
Sample Preparation
110(1)
Experiment
110(1)
Data Analysis
111(1)
Backscattering Cross-Section Spectra
111(2)
Instrumentation
113(1)
Sample Preparation
114(1)
Experiment
114(1)
Data Analysis
115(1)
Laboratory 4: Biomedical Application of Scattering Measurements
115(2)
References
117(2)
4 Microscopic Tissue Imaging 119(58)
Principles of Optical Microscopy
119(5)
Types of Contrast in Microscopy
124(10)
Phase Contrast
124(6)
Spectral Contrast: Scattering
130(1)
Spectral Contrast: Fluorescence
131(2)
Spectral Contrast: Nonlinear Scattering
133(1)
Depth Sectioning in Microscopy
134(4)
Laboratory Exercises
138(28)
Laboratory 1: Overview of the Microscope: Kohler Illumination
138(4)
Laboratory Protocol
138(2)
Materials and Sample Preparation
140(1)
Experiment
140(1)
Data Analysis
141(1)
Laboratory 2: Contrasts in Microscopy
142(3)
Instrumentation
142(1)
Phase Contrast Settings
142(1)
DIC Settings
142(1)
Fluorescence Settings
142(1)
Digital Camera Settings
143(1)
Materials and Sample Preparation
143(1)
Experiment
144(1)
Analysis
145(1)
Laboratory 3: Build Your Own Microscope
145(5)
Discussion
145(1)
Materials
146(1)
Exercises
147(3)
Laboratory 4: Interference-Based Imaging
150(5)
Instrumentation
151(1)
Materials and Sample Preparation
152(1)
Experiment
152(2)
Data Analysis
154(1)
Confocal Light Absorption and Scattering Spectroscopic Microscopy
155(1)
Introduction
155(1)
Light Scattering Spectroscopy for the Determination of Particle Size
156(1)
Effect of Objective Lens on LSS
157(1)
Laboratory 5: Experimental Observation of LSS and Effect of Finite NA on LSS Spectrum
158(1)
Laboratory 6: Spectroscopic Microscopy and Thin-Film Interference
159(7)
Background
160(1)
Thin-Film Interference Basics: Recovering Film Properties from Spectrum (Normal Incidence)
161(1)
Slab with Inhomogeneous Refractive Index
162(3)
Backscattering in Three-Dimensional Media
165(1)
Laboratory Protocol
166(7)
Instrumentation
166(1)
Measurement Protocol
166(4)
Experiment 1: Thin-Film Interference Observed from Microspheres
167(1)
Experiment 2: Interference Spectrum from an Inhomogeneous Film of Nanospheres
168(1)
Experiment 3: Interference Spectrum from a Biological Cell as an Inhomogeneous Film
169(1)
Answers and Hints
170(1)
Experiment 1: Data Analysis
170(1)
Experiment 2: Sample Preparation
170(1)
Data Analysis
171(1)
Laboratory 7: Measurement of Real and Imaginary Refractive Index of Cells
171(2)
Background
171(1)
Relationship between the Real and Imaginary Parts of the Refractive Index
172(1)
Laboratory Protocol
173(2)
Instrumentation
173(1)
What Is Needed
173(1)
Sample Preparation
173(1)
Experiment
174(1)
Data Analysis
174(1)
References
175(2)
5 Tissue Spectroscopy 177(60)
Light Transport in a Medium with Continuously Varying Refractive Index
178(4)
Discussion
178(1)
Differential Scattering Cross-Section
179(1)
Modeling Continuous Media with a Whittle-Matern Correlation Function
179(3)
Range of Validity
182(1)
Phase Function-Corrected Diffusion Approximation
182(11)
Introduction
182(1)
Transport Equation for the Phase Function-Corrected Radiance
183(5)
Derivation of the Phase Function-Corrected Radiance, Fluence Rate, and Reflectance
188(2)
Accuracy of the Phase Function-Corrected Diffusion Approximation
190(1)
Physical Interpretation of the Phase Function-Corrected Radiance
191(1)
Summary and Concluding Remarks
191(2)
Laboratory 1: Building a Spectrometer
193(3)
Suggested Lab Components
194(1)
Laboratory Protocol
194(1)
Analysis
195(1)
Discussion
196(1)
Questions
196(1)
Laboratory 2: Diffuse Reflectance Spectroscopy
196(4)
Measurement of Optical Properties
196(1)
Materials
197(1)
Lab Protocol
197(1)
Analysis
198(1)
Questions
199(1)
Learning Objectives
200(1)
Laboratory 3: Measurement of Optical Properties of Tissue Using Spectroscopic Optical Coherence Tomography
200(7)
Background
200(4)
Laboratory Protocol
204(1)
Suggested Lab Components
204(1)
Exercises
204(2)
Discussion
206(1)
Questions
206(1)
Laboratory 4: Depth-Selective Tissue Spectroscopy: Measuring Reflectance Impulse Response Function by Using Enhanced Backscattering
207(16)
Enhanced Backscattering: An Introduction
207(1)
The Scalar Theory of EBS
207(3)
Vector Theory of EBS
210(5)
Effects of Partial Spatial Coherence Illumination and Finite Illumination Spot Size on EBS
215(5)
Full EBS Equation
220(1)
Penetration Depth and Measurement of Optical Properties Using Low-Coherence EBS
220(3)
Laboratory
223(4)
Materials
223(2)
Exercises
225(2)
Laboratory 5: Depth-Selective Tissue Spectroscopy: Polarization-Gated Spectroscopy
227(3)
Laboratory
230(2)
Materials
230(1)
Protocol
231(1)
Analysis
231(1)
Questions
232(1)
Learning Objectives
232(1)
References
232(5)
6 Computational Biophotonics 237(52)
Overview of Computational Biophotonics Methods
237(7)
Laboratory 1: Designing a Spherical Particle Suspension to Mimic Scattering Properties
244(8)
Discussion
244(1)
Materials
245(1)
Exercises
245(7)
Use Mie Code to Calculate qsca and g of a Microsphere
245(1)
Calculate Scattering Coefficient mus and Reduced Scattering Coefficient mus'
245(1)
Fit a Power Law for iils
246(1)
Local Fit for the Power Law
247(1)
Refractive Index and Dispersion
247(1)
Multiple Particle Sizes
247(1)
Mimicking a Mass Fractal
248(1)
Plot the Refractive Index Correlation Function of a Sphere Suspension
249(1)
Use the Born Approximation to Calculate the Scattering Properties of a Sphere Suspension
249(1)
Calculate the Refractive Index Correlation Function of a Sphere Mixture
250(1)
Write a Script to Optimize a Sphere Mixture to Mimic a Mass Fractal Dimension Df over the Visible Spectrum
250(2)
Laboratory 2: Generalized Multiparticle Mie Algorithm
252(6)
Background
252(2)
Laboratory Protocol
254(13)
Objective
254(1)
Suggested Lab Components
254(1)
Lab Preparation
254(3)
Exercise
257(1)
Discussion and Questions
258(1)
Laboratory 3: Monte Carlo Simulations of Radiative Transport: Modeling Radial Probability Distribution from a Semi-Infinite Medium and Comparison with the Diffusion Approximation
258(9)
Monte Carlo Simulation Algorithm
259(6)
Laboratory Exercises
265(2)
Laboratory 4: The Finite-Difference Time-Domain Method in Computational Biophotonics
267(14)
Background
268(1)
Introduction to the FDTD Method
268(1)
Angora: An Open-Source FDTD Software Package
269(3)
Binary Version
270(1)
Compilation and Installation
270(1)
Running Simulations with Angora
271(1)
Laboratory
272(9)
One-Dimensional FDTD
272(5)
Scattering of Light from a Sphere: The Lorenz-Mie Solution
277(4)
Laboratory 5: Modeling Random Refractive Index Distribution in Tissue: Creating Random Volumes with Specified Covariance
281(5)
Background
282(1)
Laboratory
283(3)
References
286(3)
Index 289
Vadim Backman is a Professor of Biomedical Engineering at Northwestern University in Evansville, Illinois.