|
|
1 | (14) |
|
|
1 | (1) |
|
|
1 | (2) |
|
|
3 | (1) |
|
|
4 | (1) |
|
|
4 | (1) |
|
|
5 | (1) |
|
|
5 | (1) |
|
Ideals (Invariant Subalgebras) |
|
|
6 | (1) |
|
|
7 | (1) |
|
|
7 | (1) |
|
|
8 | (1) |
|
Compact and Non-Compact Algebras |
|
|
9 | (1) |
|
|
9 | (1) |
|
|
10 | (1) |
|
Invariant Casimir Operators |
|
|
10 | (2) |
|
Invariant Operators for Non-Semisimple Algebras |
|
|
12 | (1) |
|
Structure of Lie Algebras |
|
|
12 | (3) |
|
Algebras with One Element |
|
|
12 | (1) |
|
Algebras with Two Elements |
|
|
12 | (1) |
|
Algebras with Three Elements |
|
|
13 | (2) |
|
|
15 | (12) |
|
Cartan-Weyl Form of a (Complex) Semisimple Lie Algebra |
|
|
15 | (1) |
|
Graphical Representation of Root Vectors |
|
|
15 | (2) |
|
Explicit Construction of the Cartan-Weyl Form |
|
|
17 | (2) |
|
|
19 | (2) |
|
Classification of (Complex) Semisimple Lie Algebras |
|
|
21 | (1) |
|
Real Forms of Complex Semisimple Lie Algebras |
|
|
21 | (1) |
|
Isomorphisms of Complex Semisimple Lie Algebras |
|
|
21 | (1) |
|
Isomorphisms of Real Lie Algebras |
|
|
22 | (1) |
|
|
23 | (1) |
|
Realizations of Lie Algebras |
|
|
23 | (1) |
|
Other Realizations of Lie Algebras |
|
|
24 | (3) |
|
|
27 | (12) |
|
Groups of Transformations |
|
|
27 | (1) |
|
|
27 | (1) |
|
|
28 | (1) |
|
|
29 | (3) |
|
Examples of Groups of Transformations |
|
|
32 | (5) |
|
The Rotation Group in Two Dimensions, SO(2) |
|
|
32 | (1) |
|
The Lorentz Group in One Plus One Dimension, SO(1, 1) |
|
|
33 | (1) |
|
The Rotation Group in Three Dimensions |
|
|
34 | (1) |
|
The Special Unitary Group in Two Dimensions, SU(2) |
|
|
34 | (1) |
|
Relation Between SO(3) and SU(2) |
|
|
35 | (2) |
|
Lie Algebras and Lie Groups |
|
|
37 | (2) |
|
|
37 | (1) |
|
|
37 | (1) |
|
|
38 | (1) |
|
Irreducible Bases (Representations) |
|
|
39 | (24) |
|
|
39 | (1) |
|
Abstract Characterization |
|
|
39 | (1) |
|
|
40 | (2) |
|
Irreducible Tensors with Respect to GL(n) |
|
|
40 | (1) |
|
Irreducible Tensors with Respect to SU(n) |
|
|
41 | (1) |
|
Irreducible Tensors with Respect to O(n). Contractions |
|
|
41 | (1) |
|
Tensor Representations of Classical Compact Algebras |
|
|
42 | (2) |
|
|
42 | (1) |
|
Special Unitary Algebras su(n) |
|
|
42 | (1) |
|
Orthogonal Algebras so(n), n = Odd |
|
|
43 | (1) |
|
Orthogonal Algebras so(n), n = Even |
|
|
43 | (1) |
|
Symplectic Algebras sp(n), n = Even |
|
|
43 | (1) |
|
|
44 | (1) |
|
Orthogonal Algebras so(n), n = Odd |
|
|
44 | (1) |
|
Orthogonal Algebras so(n), n = Even |
|
|
44 | (1) |
|
Fundamental Representations |
|
|
45 | (1) |
|
|
45 | (1) |
|
|
45 | (1) |
|
Orthogonal Algebras, n = Odd |
|
|
45 | (1) |
|
Orthogonal Algebras, n = Even |
|
|
46 | (1) |
|
|
46 | (1) |
|
|
46 | (1) |
|
|
46 | (3) |
|
|
47 | (1) |
|
|
48 | (1) |
|
Isomorphisms of Spinor Algebras |
|
|
49 | (1) |
|
|
50 | (1) |
|
Dimensions of the Representations |
|
|
50 | (3) |
|
Dimensions of the Representations of u(n) |
|
|
51 | (1) |
|
Dimensions of the Representations of su(n) |
|
|
52 | (1) |
|
Dimensions of the Representations of An = su(n + 1) |
|
|
52 | (1) |
|
Dimensions of the Representations of Bn = so(2n + 1) |
|
|
52 | (1) |
|
Dimensions of the Representations of Cn = sp(2n) |
|
|
53 | (1) |
|
Dimensions of the Representations of Dn = so(2n) |
|
|
53 | (1) |
|
Action of the Elements of g on the Basis β |
|
|
53 | (3) |
|
|
56 | (2) |
|
|
58 | (5) |
|
Casimir Operators and Their Eigenvalues |
|
|
63 | (12) |
|
|
63 | (1) |
|
Independent Casimir Operators |
|
|
63 | (2) |
|
Casimir Operators of u(n) |
|
|
63 | (1) |
|
Casimir Operators of su(n) |
|
|
64 | (1) |
|
Casimir Operators of so(n), n = Odd |
|
|
64 | (1) |
|
Casimir Operators of so(n), n = Even |
|
|
64 | (1) |
|
Casimir Operators of sp(n), n = Even |
|
|
65 | (1) |
|
Casimir Operators of the Exceptional Algebras |
|
|
65 | (1) |
|
Complete Set of Commuting Operators |
|
|
65 | (1) |
|
|
66 | (1) |
|
The Orthogonal Algebra so(n), n = Odd |
|
|
66 | (1) |
|
The Orthogonal Algebra so(n), n = Even |
|
|
66 | (1) |
|
Eigenvalues of Casimir Operators |
|
|
66 | (8) |
|
The Algebras u(n) and su(n) |
|
|
67 | (2) |
|
The Orthogonal Algebra so(2n + 1) |
|
|
69 | (2) |
|
The Symplectic Algebra sp(2n) |
|
|
71 | (1) |
|
The Orthogonal Algebra so(2n) |
|
|
72 | (2) |
|
Eigenvalues of Casimir Operators of Order One and Two |
|
|
74 | (1) |
|
|
75 | (16) |
|
|
75 | (1) |
|
|
76 | (1) |
|
|
77 | (2) |
|
Nested Algebras. Racah's Factorization Lemma |
|
|
79 | (2) |
|
|
81 | (2) |
|
|
83 | (1) |
|
Symmetry Properties of Coupling Coefficients |
|
|
84 | (1) |
|
How to Compute Coupling Coefficients |
|
|
85 | (1) |
|
How to Compute Recoupling Coefficients |
|
|
86 | (1) |
|
Properties of Recoupling Coefficients |
|
|
86 | (1) |
|
Double Recoupling Coefficients |
|
|
87 | (1) |
|
|
88 | (1) |
|
Reduction Formula of the First Kind |
|
|
88 | (1) |
|
Reduction Formula of the Second Kind |
|
|
89 | (2) |
|
|
91 | (40) |
|
|
91 | (1) |
|
|
92 | (1) |
|
The Algebras u(2) and su(2) |
|
|
93 | (4) |
|
|
93 | (4) |
|
|
97 | (2) |
|
|
97 | (1) |
|
Tensor Coupled Form of the Commutators |
|
|
98 | (1) |
|
Subalgebra Chains Containing so(3) |
|
|
99 | (1) |
|
The Algebras u(3) and su(3) |
|
|
99 | (9) |
|
|
100 | (3) |
|
|
103 | (1) |
|
Boson Calculus of u(3) so(3) |
|
|
103 | (2) |
|
Matrix Elements of Operators in u(3) so(3) |
|
|
105 | (1) |
|
Tensor Calculus of u(3) so(3) |
|
|
106 | (1) |
|
Other Boson Constructions of u(3) |
|
|
107 | (1) |
|
|
108 | (7) |
|
Subalgebra Chains not Containing so(3) |
|
|
109 | (1) |
|
Subalgebra Chains Containing so(3) |
|
|
109 | (6) |
|
|
115 | (8) |
|
Subalgebra Chains not Containing so(3) |
|
|
115 | (1) |
|
Subalgebra Chains Containing so(3) |
|
|
115 | (8) |
|
|
123 | (8) |
|
Subalgebra Chain Containing g2 |
|
|
124 | (1) |
|
|
125 | (6) |
|
|
131 | (16) |
|
|
131 | (1) |
|
Lie Algebras Constructed with Fermion Operators |
|
|
131 | (1) |
|
|
132 | (1) |
|
|
133 | (5) |
|
Subalgebra Chain Containing spin(3) |
|
|
134 | (1) |
|
The Algebras u(2) and su(2). Spinors |
|
|
134 | (2) |
|
|
136 | (1) |
|
|
137 | (1) |
|
The Algebra u (Σi (2ji + 1)) |
|
|
138 | (1) |
|
Internal Degrees of Freedom (Different Spaces) |
|
|
139 | (3) |
|
The Algebras u(4) and su(4) |
|
|
139 | (2) |
|
The Algebras u(6) and su(6) |
|
|
141 | (1) |
|
Internal Degrees of Freedom (Same Space) |
|
|
142 | (5) |
|
The Algebra u((2l + 1) (2s + 1)): L-S Coupling |
|
|
142 | (3) |
|
The Algebra u ((Σj (2j + 1)): j-j Coupling |
|
|
145 | (1) |
|
The Algebra u ((Σl (2l + 1)) (2s + 1)): Mixed L-S Configurations |
|
|
146 | (1) |
|
Differential Realizations |
|
|
147 | (8) |
|
|
147 | (1) |
|
|
147 | (1) |
|
Orthogonal Algebras so(n) |
|
|
148 | (4) |
|
Casimir Operators. Laplace-Beltrami Form |
|
|
150 | (1) |
|
Basis for the Representations |
|
|
151 | (1) |
|
Orthogonal Algebras so(n, m) |
|
|
152 | (1) |
|
Symplectic Algebras sp(2n) |
|
|
153 | (2) |
|
|
155 | (8) |
|
|
155 | (1) |
|
|
155 | (3) |
|
Orthogonal Algebras so(n) |
|
|
158 | (1) |
|
Symplectic Algebras sp(2n) |
|
|
159 | (1) |
|
Basis for the Representation |
|
|
160 | (1) |
|
|
161 | (2) |
|
Spectrum Generating Algebras and Dynamic Symmetries |
|
|
163 | (10) |
|
Spectrum Generating Algebras (SGA) |
|
|
163 | (1) |
|
|
163 | (1) |
|
|
164 | (6) |
|
Dynamic Symmetries of u(4) |
|
|
165 | (2) |
|
Dynamic Symmetries of u(6) |
|
|
167 | (3) |
|
|
170 | (3) |
|
|
170 | (1) |
|
|
171 | (2) |
|
Degeneracy Algebras and Dynamical Algebras |
|
|
173 | (16) |
|
|
173 | (1) |
|
Degeneracy Algebras in v ≥ 2 Dimensions |
|
|
173 | (8) |
|
The Isotropic Harmonic Oscillator |
|
|
174 | (3) |
|
|
177 | (4) |
|
Degeneracy Algebra in v = 1 Dimension |
|
|
181 | (1) |
|
|
182 | (1) |
|
Dynamical Algebras in v ≥ 2 Dimensions |
|
|
182 | (1) |
|
|
182 | (1) |
|
|
182 | (1) |
|
Dynamical Algebra in v = 1 Dimension |
|
|
183 | (6) |
|
|
183 | (2) |
|
|
185 | (2) |
|
|
187 | (2) |
References |
|
189 | (4) |
Index |
|
193 | |