|
|
1 | (20) |
|
|
1 | (1) |
|
|
2 | (1) |
|
|
3 | (1) |
|
|
4 | (1) |
|
|
5 | (1) |
|
|
6 | (1) |
|
|
6 | (2) |
|
1.8 Ideals (Invariant Subalgebras) |
|
|
8 | (1) |
|
|
8 | (1) |
|
|
9 | (1) |
|
|
9 | (2) |
|
1.12 Compact and Non-Compact Algebras |
|
|
11 | (1) |
|
|
11 | (1) |
|
|
12 | (1) |
|
1.15 Invariant Casimir Operators |
|
|
13 | (1) |
|
1.16 Invariant Operators for Non-Semisimple Algebras |
|
|
14 | (1) |
|
1.17 Contractions of Lie Algebras |
|
|
15 | (2) |
|
1.18 Structure of Lie Algebras |
|
|
17 | (4) |
|
1.18.1 Algebras with One Element |
|
|
17 | (1) |
|
1.18.2 Algebras with Two Elements |
|
|
18 | (1) |
|
1.18.3 Algebras with Three Elements |
|
|
18 | (3) |
|
2 Semisimple Lie Algebras |
|
|
21 | (16) |
|
2.1 Cartan--Weyl Form of a (Complex) Semisimple Lie Algebra |
|
|
21 | (1) |
|
2.2 Graphical Representation of Root Vectors |
|
|
22 | (2) |
|
2.3 Explicit Construction of the Cartan--Weyl Form |
|
|
24 | (1) |
|
|
25 | (2) |
|
2.5 Classification of (Complex) Semisimple Lie Algebras |
|
|
27 | (1) |
|
2.6 Rules for Constructing the Root Vector Diagrams of Classical Lie Algebras |
|
|
27 | (2) |
|
2.7 Rules for Constructing Root Vector Diagrams of Exceptional Lie Algebras |
|
|
29 | (1) |
|
2.8 Dynkin Diagrams of Classical Lie Algebras |
|
|
30 | (1) |
|
2.9 Dynkin Diagrams of Exceptional Lie Algebras |
|
|
30 | (1) |
|
|
30 | (1) |
|
2.11 Cartan Matrices of Classical Lie Algebras |
|
|
31 | (1) |
|
2.12 Cartan Matrices of Exceptional Lie Algebras |
|
|
32 | (1) |
|
2.13 Real Forms of Complex Semisimple Lie Algebras |
|
|
32 | (1) |
|
2.14 Isomorphisms of Complex Semisimple Lie Algebras |
|
|
33 | (1) |
|
2.15 Isomorphisms of Real Lie Algebras |
|
|
33 | (1) |
|
|
33 | (1) |
|
2.17 Realizations of Lie Algebras |
|
|
34 | (1) |
|
2.18 Other Realizations of Lie Algebras |
|
|
35 | (2) |
|
|
37 | (16) |
|
3.1 Groups of Transformations |
|
|
37 | (1) |
|
|
38 | (1) |
|
3.3 Properties of Matrices |
|
|
38 | (1) |
|
3.4 Continuous Matrix Groups |
|
|
39 | (4) |
|
3.5 Examples of Groups of Transformations |
|
|
43 | (5) |
|
3.5.1 The Rotation Group in Two Dimensions, SO(2) |
|
|
43 | (1) |
|
3.5.2 The Lorentz Group in One Plus One Dimension, SO(1, 1) |
|
|
44 | (1) |
|
3.5.3 The Rotation Group in Three Dimensions, SO(3) |
|
|
45 | (1) |
|
3.5.4 The Special Unitary Group in Two Dimensions, SU(2) |
|
|
46 | (1) |
|
3.5.5 Relation Between SO(3) and SU(2) |
|
|
47 | (1) |
|
3.6 Other Important Groups of Transformations |
|
|
48 | (5) |
|
3.6.1 Translation Group, T(n) |
|
|
48 | (1) |
|
|
49 | (1) |
|
3.6.3 Euclidean Group, E(n) |
|
|
49 | (1) |
|
3.6.4 Poincare' Group, P(n) |
|
|
50 | (1) |
|
3.6.5 Dilatation Group, D(1) |
|
|
50 | (1) |
|
3.6.6 Special Conformai Group, C(n) |
|
|
51 | (1) |
|
3.6.7 General Conformai Group, GC(n) |
|
|
51 | (2) |
|
4 Lie Algebras and Lie Groups |
|
|
53 | (4) |
|
|
53 | (1) |
|
|
53 | (1) |
|
|
54 | (1) |
|
4.4 More on Exponential Maps |
|
|
55 | (1) |
|
4.5 Infinitesimal Transformations |
|
|
56 | (1) |
|
5 Homogeneous and Symmetric Spaces (Coset Spaces) |
|
|
57 | (4) |
|
|
57 | (1) |
|
5.2 Cartan Classification |
|
|
58 | (1) |
|
5.3 How to Construct Coset Spaces |
|
|
58 | (3) |
|
6 Irreducible Bases (Representations) |
|
|
61 | (32) |
|
|
61 | (1) |
|
6.2 Abstract Characterization |
|
|
61 | (1) |
|
|
61 | (5) |
|
6.3.1 Irreducible Tensors with Respect to GL(n) |
|
|
61 | (2) |
|
6.3.2 Construction of Irreducible Tensors with Respect to GL(n). Young Method |
|
|
63 | (2) |
|
6.3.3 Irreducible Tensors with Respect to SU(n) |
|
|
65 | (1) |
|
6.3.4 Irreducible Tensors with Respect to SO(n) |
|
|
65 | (1) |
|
6.4 Tensor Representations of Classical Compact Algebras |
|
|
66 | (2) |
|
6.4.1 Unitary Algebras u(n) |
|
|
66 | (1) |
|
6.4.2 Special Unitary Algebras su(n) |
|
|
66 | (1) |
|
6.4.3 Orthogonal Algebras so(n), N = Odd |
|
|
67 | (1) |
|
6.4.4 Orthogonal Algebras so(n), N = Even |
|
|
67 | (1) |
|
6.4.5 Symplectic Algebras sp(n), N = Even |
|
|
67 | (1) |
|
6.5 Spinor Representations |
|
|
68 | (1) |
|
6.5.1 Orthogonal Algebras so(n), N = Odd |
|
|
68 | (1) |
|
6.5.2 Orthogonal Algebras so(n), N = Even |
|
|
69 | (1) |
|
6.6 Fundamental Representations |
|
|
69 | (2) |
|
|
69 | (1) |
|
6.6.2 Special Unitary Algebras |
|
|
70 | (1) |
|
6.6.3 Orthogonal Algebras, N = Odd |
|
|
70 | (1) |
|
6.6.4 Orthogonal Algebras, N = Even |
|
|
70 | (1) |
|
6.6.5 Symplectic Algebras |
|
|
71 | (1) |
|
|
71 | (1) |
|
|
72 | (1) |
|
|
72 | (3) |
|
|
72 | (2) |
|
6.9.2 Orthogonal Algebras |
|
|
74 | (1) |
|
6.10 Isomorphisms of Spinor Algebras |
|
|
75 | (1) |
|
6.11 Nomenclature for u(n) |
|
|
76 | (1) |
|
6.12 Dimensions of the Representations |
|
|
77 | (3) |
|
6.12.1 Dimensions of the Representations of u(n) |
|
|
77 | (1) |
|
6.12.2 Dimensions of the Representations of su(n) |
|
|
78 | (1) |
|
6.12.3 Dimensions of the Representations of An ≡ su(n + 1) |
|
|
78 | (1) |
|
6.12.4 Dimensions of the Representations of Bn ≡ so(2n + 1) |
|
|
79 | (1) |
|
6.12.5 Dimensions of the Representations of Cn ≡ sp(2n) |
|
|
79 | (1) |
|
6.12.6 Dimensions of the Representations of Dn ≡ so(2n) |
|
|
80 | (1) |
|
6.13 Action of the Elements of G on the Basis β |
|
|
80 | (3) |
|
|
83 | (4) |
|
6.15 Non-canonical Chains |
|
|
87 | (6) |
|
7 Casimir Operators and Their Eigenvalues |
|
|
93 | (14) |
|
|
93 | (1) |
|
7.2 Independent Casimir Operators |
|
|
93 | (3) |
|
7.2.1 Casimir Operators of u(n) |
|
|
93 | (1) |
|
7.2.2 Casimir Operators of su(n) |
|
|
94 | (1) |
|
7.2.3 Casimir Operators of so(n), N = Odd |
|
|
95 | (1) |
|
7.2.4 Casimir Operators of so(n), N = Even |
|
|
95 | (1) |
|
7.2.5 Casimir Operators of sp(n), N = Even |
|
|
95 | (1) |
|
7.2.6 Casimir Operators of the Exceptional Algebras |
|
|
96 | (1) |
|
7.3 Complete set of Commuting Operators |
|
|
96 | (1) |
|
7.3.1 The Unitary Algebra u(n) |
|
|
96 | (1) |
|
7.3.2 The Orthogonal Algebra so(n), N = Odd |
|
|
97 | (1) |
|
7.3.3 The Orthogonal Algebra so(n), N = Even |
|
|
97 | (1) |
|
7.4 Eigenvalues of Casimir Operators |
|
|
97 | (8) |
|
7.4.1 The Algebras u(n) and su(n) |
|
|
97 | (3) |
|
7.4.2 The Orthogonal Algebra so(2n + 1) |
|
|
100 | (2) |
|
7.4.3 The Symplectic Algebra sp(2n) |
|
|
102 | (1) |
|
7.4.4 The Orthogonal Algebra so(2n) |
|
|
103 | (2) |
|
7.5 Eigenvalues of Casimir Operators of Order One and Two |
|
|
105 | (2) |
|
|
107 | (18) |
|
|
107 | (1) |
|
8.2 Coupling Coefficients |
|
|
108 | (1) |
|
8.3 Wigner--Eckart Theorem |
|
|
109 | (2) |
|
8.4 Nested Algebras: Racah's Factorization Lemma |
|
|
111 | (3) |
|
|
114 | (1) |
|
8.6 Recoupling Coefficients |
|
|
115 | (2) |
|
8.7 Symmetry Properties of Coupling Coefficients |
|
|
117 | (1) |
|
8.8 How to Compute Coupling Coefficients |
|
|
117 | (1) |
|
8.9 How to Compute Recoupling Coefficients |
|
|
118 | (1) |
|
8.10 Properties of Recoupling Coefficients |
|
|
119 | (1) |
|
8.11 Double Recoupling Coefficients |
|
|
120 | (1) |
|
8.12 Coupled Tensor Operators |
|
|
121 | (1) |
|
8.13 Reduction Formula of the First Kind |
|
|
122 | (1) |
|
8.14 Reduction Formula of the Second Kind |
|
|
123 | (2) |
|
|
125 | (50) |
|
|
125 | (1) |
|
9.2 The Unitary Algebra u(1) |
|
|
126 | (2) |
|
9.3 The Algebras u(2) and su(2) |
|
|
128 | (4) |
|
|
128 | (4) |
|
9.4 The Algebras u(n), N ≥ 3 |
|
|
132 | (3) |
|
|
132 | (1) |
|
9.4.2 Tensor Coupled Form of the Commutators |
|
|
133 | (1) |
|
9.4.3 Subalgebra Chains Containing so(3) |
|
|
134 | (1) |
|
9.5 The Algebras u(3) and su(3) |
|
|
135 | (10) |
|
|
135 | (4) |
|
9.5.2 Lattice of Algebras |
|
|
139 | (1) |
|
9.5.3 Boson Calculus of u(3) ⊃ so(3) |
|
|
139 | (2) |
|
9.5.4 Matrix Elements of Operators in u(3) ⊃ so(3) |
|
|
141 | (1) |
|
9.5.5 Tensor Calculus of u(3) ⊃ so(3) |
|
|
142 | (1) |
|
9.5.6 Other Boson Constructions of u(3) |
|
|
143 | (2) |
|
9.6 The Unitary Algebra u(4) |
|
|
145 | (7) |
|
9.6.1 Subalgebra Chains not Containing so(3) |
|
|
145 | (1) |
|
9.6.2 Subalgebra Chains Containing so(3) |
|
|
146 | (6) |
|
9.7 The Unitary Algebra u(6) |
|
|
152 | (10) |
|
9.7.1 Subalgebra Chains not Containing so(3) |
|
|
152 | (1) |
|
9.7.2 Subalgebra Chains Containing so(3) |
|
|
152 | (10) |
|
9.8 The Unitary Algebra u(7) |
|
|
162 | (8) |
|
9.8.1 Subalgebra Chain Containing g2 |
|
|
162 | (2) |
|
|
164 | (6) |
|
9.9 Contractions of Bosonic Algebras |
|
|
170 | (5) |
|
9.9.1 The Heisenberg Algebra h(2) |
|
|
170 | (1) |
|
9.9.2 The Heisenberg Algebra h(n), N = Even |
|
|
171 | (4) |
|
|
175 | (18) |
|
|
175 | (1) |
|
10.2 Lie Algebras Constructed with Fermion Operators |
|
|
176 | (1) |
|
|
177 | (1) |
|
10.4 The Algebras u(2j + 1) |
|
|
178 | (5) |
|
10.4.1 Subalgebra Chain Containing Spin(3) |
|
|
178 | (1) |
|
10.4.2 The Algebras u(2) and su(2): Spinors |
|
|
179 | (1) |
|
|
180 | (2) |
|
|
182 | (1) |
|
10.4.5 Branchings of u(2j + 1) |
|
|
183 | (1) |
|
10.5 The Algebra U (Σi (2ji + 1)) |
|
|
183 | (1) |
|
10.6 Internal Degrees of Freedom (Different Spaces) |
|
|
184 | (3) |
|
10.6.1 The Algebras u(4) and su(4) |
|
|
184 | (1) |
|
10.6.2 The Algebras u(6) and su(b) |
|
|
185 | (2) |
|
10.7 Internal Degrees of Freedom (Same Space) |
|
|
187 | (6) |
|
10.7.1 The Algebra u((2l + 1)(2s + 1)): L-S Coupling |
|
|
187 | (3) |
|
10.7.2 The Algebra U (Σj (2j + 1)): j-j Coupling |
|
|
190 | (1) |
|
10.7.3 The Algebra U ((Σl (2l+ 1)) (2s + 1)): Mixed L-S Configurations |
|
|
191 | (2) |
|
11 Differential Realizations |
|
|
193 | (8) |
|
11.1 Differential Operators |
|
|
193 | (1) |
|
11.2 Unitary Algebras u(n) |
|
|
193 | (1) |
|
11.3 Orthogonal Algebras so(n) |
|
|
194 | (4) |
|
11.3.1 Casimir Operators: Laplace-Beltrami Form |
|
|
197 | (1) |
|
11.3.2 Basis for the Representations |
|
|
197 | (1) |
|
11.4 Orthogonal Algebras so(n, m) |
|
|
198 | (1) |
|
11.5 Symplectic Algebras sp(2n) |
|
|
199 | (2) |
|
|
201 | (10) |
|
|
201 | (1) |
|
12.2 Unitary Algebras u(n) |
|
|
202 | (3) |
|
12.3 Orthogonal Algebras so(n) |
|
|
205 | (1) |
|
12.4 Symplectic Algebras sp(2n) |
|
|
205 | (2) |
|
12.5 Basis for the Representation |
|
|
207 | (1) |
|
|
208 | (3) |
|
|
211 | (24) |
|
13.1 Coset Spaces U(n)/U(n -- 1) ⊗ U(1) |
|
|
211 | (1) |
|
13.2 Coherent (or Intrinsic) States |
|
|
212 | (3) |
|
13.2.1 'Algebraic' Coherent States |
|
|
212 | (1) |
|
13.2.2 'Group' Coherent States |
|
|
213 | (1) |
|
13.2.3 'Projective' Coherent States |
|
|
214 | (1) |
|
|
215 | (1) |
|
13.3 Coherent States of u(n), N = Even |
|
|
215 | (5) |
|
13.3.1 Coherent States of u(2) |
|
|
216 | (1) |
|
13.3.2 Coherent States of u(4) |
|
|
216 | (2) |
|
13.3.3 Coherent States of u(6) |
|
|
218 | (2) |
|
13.4 Coherent States of u(n), N = Odd |
|
|
220 | (1) |
|
13.4.1 Coherent States of u(3) |
|
|
220 | (1) |
|
13.5 Generalized Coherent States |
|
|
221 | (1) |
|
13.6 The Geometry of Algebraic Models |
|
|
221 | (1) |
|
13.7 Coset Spaces SO(n + m)/SO(n) ⊗ SO(m) |
|
|
222 | (7) |
|
13.7.1 The Coset Space SO(3)/SO(2): The Sphere S2 |
|
|
222 | (2) |
|
13.7.2 The Coset Space SO(4)/SO(3) |
|
|
224 | (2) |
|
13.7.3 The Coset Spaces SO(n + 2)/SO(n) ⊗ SO(2) |
|
|
226 | (3) |
|
13.8 Coset Spaces SO(n, m)/SO(n) ⊗ SO(m) |
|
|
229 | (2) |
|
13.8.1 The Coset Space SO(2, l)/SO(2): The Hyperboloid H2 |
|
|
229 | (1) |
|
13.8.2 The Coset Space SO(3, l)/SO(3) |
|
|
230 | (1) |
|
13.9 Action of the Coset P = G/H |
|
|
231 | (4) |
|
13.9.1 Cosets SO(n + 1)/SO(n) |
|
|
231 | (2) |
|
13.9.2 Cosets SO(u, 1)/SO(n) |
|
|
233 | (2) |
|
14 Spectrum Generating Algebras and Dynamic Symmetries |
|
|
235 | (12) |
|
14.1 Spectrum Generating Algebras |
|
|
235 | (1) |
|
|
236 | (1) |
|
|
236 | (6) |
|
14.3.1 Dynamic Symmetries of u(4) |
|
|
237 | (3) |
|
14.3.2 Dynamic Symmetries of u(6) |
|
|
240 | (2) |
|
|
242 | (5) |
|
14.4.1 Dynamic Symmetry of u(4) |
|
|
243 | (1) |
|
14.4.2 Dynamic Symmetry of u(6) |
|
|
244 | (3) |
|
15 Degeneracy Algebras and Dynamical Algebras |
|
|
247 | (18) |
|
|
247 | (1) |
|
15.2 Degeneracy Algebras in V ≥ 2 Dimensions |
|
|
248 | (8) |
|
15.2.1 The Isotropic Harmonic Oscillator |
|
|
248 | (3) |
|
15.2.2 The Coulomb Problem |
|
|
251 | (5) |
|
15.3 Degeneracy Algebra in V = 1 Dimension |
|
|
256 | (1) |
|
|
256 | (1) |
|
15.5 Dynamical Algebras in V ≥ 2 Dimensions |
|
|
257 | (1) |
|
15.5.1 Harmonic Oscillator |
|
|
257 | (1) |
|
|
257 | (1) |
|
15.6 Dynamical Algebra in V = 1 Dimension |
|
|
258 | (7) |
|
15.6.1 Poschl-Teller Potential |
|
|
258 | (2) |
|
|
260 | (3) |
|
15.6.3 Lattice of Algebras |
|
|
263 | (2) |
References |
|
265 | (4) |
Index |
|
269 | |