Muutke küpsiste eelistusi

Low-Dimensional Semiconductor Structures: Fundamentals and Device Applications [Kõva köide]

Edited by (Imperial College of Science, Technology and Medicine, London), Edited by (Imperial College of Science, Technology and Medicine, London)
  • Formaat: Hardback, 408 pages, kõrgus x laius x paksus: 256x181x28 mm, kaal: 1036 g, Worked examples or Exercises; 5 Halftones, unspecified; 270 Line drawings, unspecified
  • Ilmumisaeg: 12-Jul-2001
  • Kirjastus: Cambridge University Press
  • ISBN-10: 0521591031
  • ISBN-13: 9780521591034
Teised raamatud teemal:
  • Formaat: Hardback, 408 pages, kõrgus x laius x paksus: 256x181x28 mm, kaal: 1036 g, Worked examples or Exercises; 5 Halftones, unspecified; 270 Line drawings, unspecified
  • Ilmumisaeg: 12-Jul-2001
  • Kirjastus: Cambridge University Press
  • ISBN-10: 0521591031
  • ISBN-13: 9780521591034
Teised raamatud teemal:
Low-Dimensional Semiconductor Structures provides a seamless, atoms-to-devices introduction to the latest quantum heterostructures. It covers their fabrication, their electronic, optical and transport properties, their role in exploring physical phenomena, and their utilization in devices. The authors begin with a detailed description of the epitaxial growth of semiconductors. They then deal with the physical behaviour of electrons and phonons in low-dimensional structures. A discussion of localization effects and quantum transport phenomena is followed by coverage of the optical properties of quantum wells. They then go on to discuss non-linear optics in quantum heterostructures. The final chapters deal with semiconductor lasers, mesoscopic devices, and high-speed heterostructure devices. The book contains many exercises and comprehensive references. It is suitable as a textbook for graduate-level courses in electrical engineering and applied physics. It will also be of interest to engineers involved in the development of semiconductor devices.

Muu info

An atoms-to-devices introduction to the latest quantum heterostructures.
List of contributors xii Preface xiii Epitaxial Growth of Semiconductors 1(55) D. D. Vvedensky Introduction 1(2) Epitaxial Growth Techniques 3(5) Molecular-beam Epitaxy 3(3) Vapour-phase Epitaxy 6(1) Molecular-beam Epitaxy with Heteroatomic Precursors 7(1) Epitaxial Growth Modes 8(2) In Situ Observation of Growth Kinetics and Surface Morphology 10(6) Reflection High-energy Electron Diffraction 11(1) Scanning Tunnelling Microscopy 12(1) Atomic Force Microscopy 13(3) Atomistic Processes during Homoepitaxy 16(7) Growth Kinetics on Vicinal GaAs(001) 16(3) Anisotropic Growth and Surface Reconstructions 19(1) Vicinal GaAs(001) 19(2) Vicinal Si(001) 21(2) Models of Homoepitaxial Kinetics 23(6) The Theory of Burton, Cabrera and Frank 23(1) Homogeneous Rate Equations 24(3) Multilayer Growth on Singular Surfaces 27(2) Mechanisms of Heteroepitaxial Growth 29(3) Kinetics and Equilibrium with Misfit Strain 29(1) The Frenkel-Kontorova Model 30(2) Direct Growth of Quantum Heterostructures 32(10) Quantum Wells and Quantum-well Superlattices 33(1) Quantum Wire Superlattices 34(3) Self-organized Quantum Dots 37(1) Stranski-Krastanov Growth of InAs on GaAs(001) 38(2) Controlled Positioning of Quantum Dots 40(1) Ge `Hut Clusters on Si(001) 40(2) Growth on Patterned Substrates 42(4) Selective Area Growth 43(1) Quantum Wires on `V-Grooved Surfaces 43(1) Stranski-Krastanov Growth on Patterned Substrates 44(2) Future Directions 46(10) Exercises 47(4) References 51(5) Electrons in Quantum Semiconductor Structures: An Introduction 56(23) E. A. Johnson Introduction 56(1) Ideal Low-dimensional Systems 57(4) Free Electrons in Three Dimensions: A Review 57(1) Ideal Two-dimensional Electron Gas 58(2) Ideal Zero- and One-dimensional Electron Gases 60(1) Quantum Wells, Wires, and Dots 61(1) Real Electron Gases: Single Particle Models 61(18) Ideal Square Well 62(3) Some Generalizations 65(1) Holes in Quantum Wells 65(1) Non-parabolicity 65(1) Finite Quantum Wells and Real Systems 66(4) Interface Effects 70(1) Effective Mass for Parallel Transport 70(1) Effective-mass Correction to Conduction-band Discontinuities 71(2) Quantum Wires 73(1) Quantum Point Contacts 74(1) Quantum Dots 75(1) Exercises 76(1) References 77(2) Electrons in Quantum Semiconductors Structures: More Advanced Systems and Methods 79(44) E. A. Johnson Introduction 79(1) Many-body Effects 79(7) The Hartree Approximation 79(2) Beyond the Hartree Approximation 81(1) The 2DEG at a Heterojunction Interface 82(3) The Ideal Heterojunction 85(1) Some Calculational Methods 86(11) The WKB Approximation 87(3) The 2DEG in Doping Wells 90(3) The Delta Well (Spike Doping) 93(2) The Thomas-Fermi Approximation for Two-dimensional Systems 95(1) The Thomas-Fermi Approximation for Heterojunctions and Delta Wells 96(1) Quantum Wires and Quantum Dots 97(9) Quantum Point Contacts and Quantized Conductance Steps 97(4) A Closer Look at Quantum Dots 101(3) The Coulomb Blockade and Single-electron Transistors 104(2) Superlattices 106(17) Superlattices and Multi-quantum-wells 107(2) Miniband Properties: The WKB Approximation 109(3) Doping Superlattices 112(2) Delta-Doped n-i-p-is 114(1) Compositional and Doping Superlattices 115(1) Other Types of Superlattices 116(2) Exercises 118(4) References 122(1) Phonons in Low-dimensional Semiconductor Structures 123(26) M. P. Blencowe Introduction 123(1) Phonons in Heterostructures 124(11) Superlattices 125(6) Mesoscopic Phonon Phenomena 131(4) Electron-Phonon Interactions in Heterostructures 135(9) Conclusion 144(5) Exercises 145(2) References 147(2) Localization and Quantum Transport 149(31) A. MacKinnon Introduction 149(2) Localization 151(4) Percolation 151(1) The Anderson Transition and the Mobility Edge 151(3) Variable Range Hopping 154(1) Minimum Metallic Conductivity 154(1) Scaling Theory and Quantum Interference 155(9) The Gang of Four 155(2) Experiments on Weak Localization 157(1) Quantum Interference 158(1) Negative Magnetoresistance 159(1) Single Rings and Non-local Transport 160(3) Spin-orbit Coupling, Magnetic Impurities, etc. 163(1) Universal Conductance Fluctuations 163(1) Ballistic Transport 163(1) Interfaction Effects 164(1) The In T Correction 164(1) Wigner Crystallization 164(1) The Quantum Hall Effect 165(15) General 165(3) The Quantum Hall Effect Measurements 168(2) The Semiclassical Theory 170(2) The Fractional Quantum Hall Effect 172(3) Exercises 175(3) References 178(2) Electronic States and Optical Properties of Quantum Wells 180(47) J. Nelson Introduction 180(3) The Envelope Function Scheme 183(4) The Parabolic Band Model 187(5) Effects of Band Mixing 192(2) Light Particle Band Non-parabolicity 192(1) Valence Band Non-parabolicity 193(1) Multiple Well Effects 194(3) Effects of the Coulomb Interaction 197(4) Excitons in Bulk Semiconductors 197(1) Excitons in Quantum Wells 198(3) Effects of Applied Bias 201(4) Optical Absorption in a Quantum Well 205(4) Optical Characterization 209(6) Measurement of Absorption 209(2) Features of Optical Spectra 211(1) Band Non-parabolicity 211(1) Valence Band Mixing 212(2) Interwell Coupling 214(1) Electric Field 214(1) Quantum-well Solar Cells 215(7) Photoconversion 215(2) Basic Principles 217(1) Photocurrent 217(4) Recombination Current 221(1) Carrier Escape 221(1) Concluding Remarks 222(5) Exercises 222(3) References 225(2) Non-Linear Optics in Low-dimensional Semiconductors 227(33) C. C. Phillips Introduction 227(2) Non-dissipative NLO Processes 229(2) Dissipative NLO Effects 231(1) Potential Applications of NLO 232(2) Serial Channel Applications 232(1) Multi-channel Applications: Optical Computing 233(1) Excitonic Optical Saturation in MQWs 234(5) Excitonic Absorption at Low Intensities 234(3) Saturation of Excitonic Peaks at High Intensities 237(2) The Quantum Confirmed Stark Effect 239(3) Doping Superlattices (`n-i-p-i Crystals) 242(4) Hetero-n-i-p-i Structures 246(8) Band Filling Effects in Hetero-n-i-p-i s 247(2) The QCSE in Hetero-n-i-p-i s 249(5) Concluding Remarks 254(6) Exercises 255(2) References 257(3) Semiconductor Lasers 260(36) A. Khan P. N. Stavrinou G. Parry Introduction 260(2) Basic Laser Theory 262(10) Laser Threshold 265(2) Threshold Current Density 267(3) Power Output 270(2) Fundamental Gain Calculations 272(8) Electronic Band Structure and Densities of States 272(2) Carrier Density and Inversion 274(2) Gain Expression 276(1) Optical Gain in 2D and 3D Active Regions 277(3) Strained Layers 280(6) Optical Interband Matrix Element 284(2) Some other Laser Geometries 286(10) Exercises 292(2) References 294(2) Mesoscopic Devices 296(52) T. J. Thornton Introduction 296(1) Quantum Interference Transistors 297(17) Quantum Interference and Negative Magnetoresistance 297(6) The Aharanov-Bohm Effect 303(3) Universal Conductance Fluctuations 306(3) Quantum Interference Transistors 309(1) The Gated Ring Interferometer 310(1) The Stub Tuner 311(1) Problems with Quantum Interference Transistors 311(3) Ballistic Electron Devices 314(11) Electron Transmission and the Landauer-Buttiker Formula 315(1) Quantized Conductance in Ballistic Point Contacts 316(2) Multi-terminal Devices 318(1) The Negative Bend Resistance 318(1) Quenching of the Hall Effect 319(1) Possible Applications of Ballistic Electron Devices 320(3) Boundary Scattering in Ballistic Structures 323(2) Quantum Dot Resonant Tunnelling Devices 325(6) Resonant Tunnelling through Quantum Wells 326(2) Resonant Tunnelling through Quantum Dots 328(1) Gated Resonant Tunnelling through Quantum Dots 329(2) Coulomb Blockade and Single-electron Transistors 331(11) Coulomb Blockade in the Current-biassed Single Junction 332(2) Coulomb Blockade in Double Junctions 334(1) Necessary Conditions for Efficient Coulomb Blockade 335(1) Single-electron Transistors 335(4) Co-tunnelling and Multiple Tunnel Junctions 339(1) Possible Applications of Single-electron Transistors 340(2) The Future of Mesoscopic Devices 342(6) Exercises 343(2) References 345(3) High-speed Heterostructure Devices 348(31) J. J. Harris Introduction 348(1) Field-effect Transistors 349(14) The Si MOSFET 349(6) GaAs/AlGaAs High-electron-mobility Transistor 355(3) InGaAs HEMTs 358(3) Delta-doped FETs 361(2) Vertical Transport Devices 363(12) Unipolar Diodes 364(1) Hot-electron Devices 365(2) Resonant Tunnelling Structures 367(3) Superlattice Devices 370(2) Heterojunction Bipolar Transistors 372(3) Conclusions 375(4) Exercises 375(2) References 377(2) Solutions to Selected Exercises 379(8) Index 387