Muutke küpsiste eelistusi

Low-Dimensional Semiconductor Structures: Fundamentals and Device Applications [Pehme köide]

Edited by (Imperial College of Science, Technology and Medicine, London), Edited by (Imperial College of Science, Technology and Medicine, London)
  • Formaat: Paperback / softback, 408 pages, kõrgus x laius x paksus: 226x151x21 mm, kaal: 690 g, Worked examples or Exercises; 5 Halftones, unspecified; 270 Line drawings, unspecified
  • Ilmumisaeg: 11-Dec-2008
  • Kirjastus: Cambridge University Press
  • ISBN-10: 0521599040
  • ISBN-13: 9780521599047
Teised raamatud teemal:
  • Formaat: Paperback / softback, 408 pages, kõrgus x laius x paksus: 226x151x21 mm, kaal: 690 g, Worked examples or Exercises; 5 Halftones, unspecified; 270 Line drawings, unspecified
  • Ilmumisaeg: 11-Dec-2008
  • Kirjastus: Cambridge University Press
  • ISBN-10: 0521599040
  • ISBN-13: 9780521599047
Teised raamatud teemal:
Low-Dimensional Semiconductor Structures provides a seamless, atoms-to-devices introduction to the latest quantum heterostructures. It covers their fabrication, their electronic, optical and transport properties, their role in exploring physical phenomena, and their utilization in devices. The authors begin with a detailed description of the epitaxial growth of semiconductors. They then deal with the physical behaviour of electrons and phonons in low-dimensional structures. A discussion of localization effects and quantum transport phenomena is followed by coverage of the optical properties of quantum wells. They then go on to discuss non-linear optics in quantum heterostructures. The final chapters deal with semiconductor lasers, mesoscopic devices, and high-speed heterostructure devices. The book contains many exercises and comprehensive references. It is suitable as a textbook for graduate-level courses in electrical engineering and applied physics. It will also be of interest to engineers involved in the development of semiconductor devices.

Muu info

An atoms-to-devices introduction to the latest quantum heterostructures.
List of contributors
xii
Preface xiii
Epitaxial Growth of Semiconductors
1(55)
D. D. Vvedensky
Introduction
1(2)
Epitaxial Growth Techniques
3(5)
Molecular-beam Epitaxy
3(3)
Vapour-phase Epitaxy
6(1)
Molecular-beam Epitaxy with Heteroatomic Precursors
7(1)
Epitaxial Growth Modes
8(2)
In Situ Observation of Growth Kinetics and Surface Morphology
10(6)
Reflection High-energy Electron Diffraction
11(1)
Scanning Tunnelling Microscopy
12(1)
Atomic Force Microscopy
13(3)
Atomistic Processes during Homoepitaxy
16(7)
Growth Kinetics on Vicinal GaAs(001)
16(3)
Anisotropic Growth and Surface Reconstructions
19(1)
Vicinal GaAs(001)
19(2)
Vicinal Si(001)
21(2)
Models of Homoepitaxial Kinetics
23(6)
The Theory of Burton, Cabrera and Frank
23(1)
Homogeneous Rate Equations
24(3)
Multilayer Growth on Singular Surfaces
27(2)
Mechanisms of Heteroepitaxial Growth
29(3)
Kinetics and Equilibrium with Misfit Strain
29(1)
The Frenkel-Kontorova Model
30(2)
Direct Growth of Quantum Heterostructures
32(10)
Quantum Wells and Quantum-well Superlattices
33(1)
Quantum Wire Superlattices
34(3)
Self-organized Quantum Dots
37(1)
Stranski-Krastanov Growth of InAs on GaAs(001)
38(2)
Controlled Positioning of Quantum Dots
40(1)
Ge `Hut' Clusters on Si(001)
40(2)
Growth on Patterned Substrates
42(4)
Selective Area Growth
43(1)
Quantum Wires on `V-Grooved' Surfaces
43(1)
Stranski-Krastanov Growth on Patterned Substrates
44(2)
Future Directions
46(10)
Exercises
47(4)
References
51(5)
Electrons in Quantum Semiconductor Structures: An Introduction
56(23)
E. A. Johnson
Introduction
56(1)
Ideal Low-dimensional Systems
57(4)
Free Electrons in Three Dimensions: A Review
57(1)
Ideal Two-dimensional Electron Gas
58(2)
Ideal Zero- and One-dimensional Electron Gases
60(1)
Quantum Wells, Wires, and Dots
61(1)
Real Electron Gases: Single Particle Models
61(18)
Ideal Square Well
62(3)
Some Generalizations
65(1)
Holes in Quantum Wells
65(1)
Non-parabolicity
65(1)
Finite Quantum Wells and Real Systems
66(4)
Interface Effects
70(1)
Effective Mass for Parallel Transport
70(1)
Effective-mass Correction to Conduction-band Discontinuities
71(2)
Quantum Wires
73(1)
Quantum Point Contacts
74(1)
Quantum Dots
75(1)
Exercises
76(1)
References
77(2)
Electrons in Quantum Semiconductors Structures: More Advanced Systems and Methods
79(44)
E. A. Johnson
Introduction
79(1)
Many-body Effects
79(7)
The Hartree Approximation
79(2)
Beyond the Hartree Approximation
81(1)
The 2DEG at a Heterojunction Interface
82(3)
The Ideal Heterojunction
85(1)
Some Calculational Methods
86(11)
The WKB Approximation
87(3)
The 2DEG in Doping Wells
90(3)
The Delta Well (Spike Doping)
93(2)
The Thomas-Fermi Approximation for Two-dimensional Systems
95(1)
The Thomas-Fermi Approximation for Heterojunctions and Delta Wells
96(1)
Quantum Wires and Quantum Dots
97(9)
Quantum Point Contacts and Quantized Conductance Steps
97(4)
A Closer Look at Quantum Dots
101(3)
The Coulomb Blockade and Single-electron Transistors
104(2)
Superlattices
106(17)
Superlattices and Multi-quantum-wells
107(2)
Miniband Properties: The WKB Approximation
109(3)
Doping Superlattices
112(2)
Delta-Doped n-i-p-is
114(1)
Compositional and Doping Superlattices
115(1)
Other Types of Superlattices
116(2)
Exercises
118(4)
References
122(1)
Phonons in Low-dimensional Semiconductor Structures
123(26)
M. P. Blencowe
Introduction
123(1)
Phonons in Heterostructures
124(11)
Superlattices
125(6)
Mesoscopic Phonon Phenomena
131(4)
Electron-Phonon Interactions in Heterostructures
135(9)
Conclusion
144(5)
Exercises
145(2)
References
147(2)
Localization and Quantum Transport
149(31)
A. MacKinnon
Introduction
149(2)
Localization
151(4)
Percolation
151(1)
The Anderson Transition and the Mobility Edge
151(3)
Variable Range Hopping
154(1)
Minimum Metallic Conductivity
154(1)
Scaling Theory and Quantum Interference
155(9)
The Gang of Four
155(2)
Experiments on Weak Localization
157(1)
Quantum Interference
158(1)
Negative Magnetoresistance
159(1)
Single Rings and Non-local Transport
160(3)
Spin-orbit Coupling, Magnetic Impurities, etc.
163(1)
Universal Conductance Fluctuations
163(1)
Ballistic Transport
163(1)
Interaction Effects
164(1)
The In T Correction
164(1)
Wigner Crystallization
164(1)
The Quantum Hall Effect
165(15)
General
165(3)
The Quantum Hall Effect Measurements
168(2)
The Semiclassical Theory
170(2)
The Fractional Quantum Hall Effect
172(3)
Exercises
175(3)
References
178(2)
Electronic States and Optical Properties of Quantum Wells
180(47)
J. Nelson
Introduction
180(3)
The Envelope Function Scheme
183(4)
The Parabolic Band Model
187(5)
Effects of Band Mixing
192(2)
Light Particle Band Non-parabolicity
192(1)
Valence Band Non-parabolicity
193(1)
Multiple Well Effects
194(3)
Effects of the Coulomb Interaction
197(4)
Excitons in Bulk Semiconductors
197(1)
Excitons in Quantum Wells
198(3)
Effects of Applied Bias
201(4)
Optical Absorption in a Quantum Well
205(4)
Optical Characterization
209(6)
Measurement of Absorption
209(2)
Features of Optical Spectra
211(1)
Band Non-parabolicity
211(1)
Valence Band Mixing
212(2)
Interwell Coupling
214(1)
Electric Field
214(1)
Quantum-well Solar Cells
215(7)
Photoconversion
215(2)
Basic Principles
217(1)
Photocurrent
217(4)
Recombination Current
221(1)
Carrier Escape
221(1)
Concluding Remarks
222(5)
Exercises
222(3)
References
225(2)
Non-Linear Optics in Low-dimensional Semiconductors
227(33)
C. C. Phillips
Introduction
227(2)
Non-dissipative NLO Processes
229(2)
Dissipative NLO Effects
231(1)
Potential Applications of NLO
232(2)
Serial Channel Applications
232(1)
Multi-channel Applications: Optical Computing
233(1)
Excitonic Optical Saturation in MQWs
234(5)
Excitonic Absorption at Low Intensities
234(3)
Saturation of Excitonic Peaks at High Intensities
237(2)
The Quantum Confined Stark Effect
239(3)
Doping Superlattices (`n-i-p-i' Crystals)
242(4)
Hetero-n-i-p-i Structures
246(8)
Band Filling Effects in Hetero-n-i-p-is
247(2)
The QCSE in Hetero-n-i-p-is
249(5)
Concluding Remarks
254(6)
Exercises
255(2)
References
257(3)
Semiconductor Lasers
260(36)
A. Khan
P. N. Stavrinou
G. Parry
Introduction
260(2)
Basic Laser Theory
262(10)
Laser Threshold
265(2)
Threshold Current Density
267(3)
Power Output
270(2)
Fundamental Gain Calculations
272(8)
Electronic Band Structure and Densities of States
272(2)
Carrier Density and Inversion
274(2)
Gain Expression
276(1)
Optical Gain in 2D and 3D Active Regions
277(3)
Strained Layers
280(6)
Optical Interband Matrix Element
284(2)
Some other Laser Geometries
286(10)
Exercises
292(2)
References
294(2)
Mesoscopic Devices
296(52)
T. J. Thornton
Introduction
296(1)
Quantum Interference Transistors
297(17)
Quantum Interference and Negative Magnetoresistance
297(6)
The Aharanov-Bohm Effect
303(3)
Universal Conductance Fluctuations
306(3)
Quantum Interference Transistors
309(1)
The Gated Ring Interferometer
310(1)
The Stub Tuner
311(1)
Problems with Quantum Interference Transistors
311(3)
Ballistic Electron Devices
314(11)
Electron Transmission and the Landauer-Buttiker Formula
315(1)
Quantized Conductance in Ballistic Point Contacts
316(2)
Multi-terminal Devices
318(1)
The Negative Bend Resistance
318(1)
Quenching of the Hall Effect
319(1)
Possible Applications of Ballistic Electron Devices
320(3)
Boundary Scattering in Ballistic Structures
323(2)
Quantum Dot Resonant Tunnelling Devices
325(6)
Resonant Tunnelling through Quantum Wells
326(2)
Resonant Tunnelling through Quantum Dots
328(1)
Gated Resonant Tunnelling through Quantum Dots
329(2)
Coulomb Blockade and Single-electron Transistors
331(11)
Coulomb Blockade in the Current-biassed Single Junction
332(2)
Coulomb Blockade in Double Junctions
334(1)
Necessary Conditions for Efficient Coulomb Blockade
335(1)
Single-electron Transistors
335(4)
Co-tunnelling and Multiple Tunnel Junctions
339(1)
Possible Applications of Single-electron Transistors
340(2)
The Future of Mesoscopic Devices
342(6)
Exercises
343(2)
References
345(3)
High-speed Heterostructure Devices
348(31)
J. J. Harris
Introduction
348(1)
Field-effect Transistors
349(14)
The Si MOSFET
349(6)
GaAs/AlGaAs High-electron-mobility Transistor
355(3)
InGaAs HEMTs
358(3)
Delta-doped FETs
361(2)
Vertical Transport Devices
363(12)
Unipolar Diodes
364(1)
Hot-electron Devices
365(2)
Resonant Tunnelling Structures
367(3)
Superlattice Devices
370(2)
Heterojunction Bipolar Transistors
372(3)
Conclusions
375(4)
Exercises
375(2)
References
377(2)
Solutions to Selected Exercises 379(8)
Index 387