Muutke küpsiste eelistusi

Mathematical and Computational Oncology: Third International Symposium, ISMCO 2021, Virtual Event, October 1113, 2021, Proceedings 1st ed. 2021 [Pehme köide]

Edited by , Edited by , Edited by , Edited by , Edited by
  • Formaat: Paperback / softback, 79 pages, kõrgus x laius: 235x155 mm, kaal: 174 g, 31 Illustrations, color; 2 Illustrations, black and white; XXI, 79 p. 33 illus., 31 illus. in color., 1 Paperback / softback
  • Sari: Lecture Notes in Bioinformatics 13060
  • Ilmumisaeg: 12-Dec-2021
  • Kirjastus: Springer Nature Switzerland AG
  • ISBN-10: 303091240X
  • ISBN-13: 9783030912406
Teised raamatud teemal:
  • Pehme köide
  • Hind: 53,33 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 62,74 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 79 pages, kõrgus x laius: 235x155 mm, kaal: 174 g, 31 Illustrations, color; 2 Illustrations, black and white; XXI, 79 p. 33 illus., 31 illus. in color., 1 Paperback / softback
  • Sari: Lecture Notes in Bioinformatics 13060
  • Ilmumisaeg: 12-Dec-2021
  • Kirjastus: Springer Nature Switzerland AG
  • ISBN-10: 303091240X
  • ISBN-13: 9783030912406
Teised raamatud teemal:
This book constitutes the refereed proceedings of the Third International Symposium on Mathematical and Computational Oncology, ISMCO 2021, held in October 2021. Due to COVID-19 pandemic the conference was held virtually.

The 3 full papers and 4 short papers presented were carefully reviewed and selected from 20 submissions. The papers are organized in topical sections named: statistical and machine learning methods for cancer research; mathematical modeling for cancer research; spatio-temporal tumor modeling and simulation; general cancer computational biology; mathematical modeling for cancer research; computational methods for anticancer drug development.

Statistical and Machine Learning Methods for Cancer Research Image
Classification of Skin Cancer: Using Deep Learning as a Tool for Skin
Self-Examinations.- Predictive Signatures for Lung Adenocarcinoma Prognostic
Trajectory by Omics Data Integration and Ensemble Learning.- The Role of
Hydrophobicity in Peptide-MHC Binding.- Spatio-temporal tumor modeling and
simulation Simulating cytotoxic T-lymphocyte & cancer cells interactions : An
LSTM-based approach to surrogate an agent-based model.- General cancer
computational biology Strategies to reduce long-term drug resistance by
considering effects of differential selective treatments.- Mathematical
Modeling for Cancer Research Improved Geometric Configuration for the Bladder
Cancer BCG-based Immunotherapy Treatment Model.- Computational methods for
anticancer drug development Run for your life an integrated virtual tissue
platform for incorporating exercise oncology into immunotherapy.