Muutke küpsiste eelistusi

E-raamat: Mathematical and Computational Oncology: Third International Symposium, ISMCO 2021, Virtual Event, October 11-13, 2021, Proceedings

Edited by , Edited by , Edited by , Edited by , Edited by
  • Formaat: EPUB+DRM
  • Sari: Lecture Notes in Bioinformatics 13060
  • Ilmumisaeg: 11-Dec-2021
  • Kirjastus: Springer Nature Switzerland AG
  • Keel: eng
  • ISBN-13: 9783030912413
  • Formaat - EPUB+DRM
  • Hind: 61,74 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: EPUB+DRM
  • Sari: Lecture Notes in Bioinformatics 13060
  • Ilmumisaeg: 11-Dec-2021
  • Kirjastus: Springer Nature Switzerland AG
  • Keel: eng
  • ISBN-13: 9783030912413

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book constitutes the refereed proceedings of the Third International Symposium on Mathematical and Computational Oncology, ISMCO 2021, held in October 2021. Due to COVID-19 pandemic the conference was held virtually.

The 3 full papers and 4 short papers presented were carefully reviewed and selected from 20 submissions. The papers are organized in topical sections named: statistical and machine learning methods for cancer research; mathematical modeling for cancer research; spatio-temporal tumor modeling and simulation; general cancer computational biology; mathematical modeling for cancer research; computational methods for anticancer drug development.

Statistical and Machine Learning Methods for Cancer Research Image
Classification of Skin Cancer: Using Deep Learning as a Tool for Skin
Self-Examinations.- Predictive Signatures for Lung Adenocarcinoma Prognostic
Trajectory by Omics Data Integration and Ensemble Learning.- The Role of
Hydrophobicity in Peptide-MHC Binding.- Spatio-temporal tumor modeling and
simulation Simulating cytotoxic T-lymphocyte & cancer cells interactions : An
LSTM-based approach to surrogate an agent-based model.- General cancer
computational biology Strategies to reduce long-term drug resistance by
considering effects of differential selective treatments.- Mathematical
Modeling for Cancer Research Improved Geometric Configuration for the Bladder
Cancer BCG-based Immunotherapy Treatment Model.- Computational methods for
anticancer drug development Run for your life an integrated virtual tissue
platform for incorporating exercise oncology into immunotherapy.