Muutke küpsiste eelistusi

Maximal Cohen-Macaulay Modules and Tate Cohomology [Pehme köide]

  • Formaat: Paperback / softback, 175 pages, kõrgus x laius: 254x178 mm, kaal: 342 g
  • Sari: Mathematical Surveys and Monographs
  • Ilmumisaeg: 28-Feb-2022
  • Kirjastus: American Mathematical Society
  • ISBN-10: 1470453401
  • ISBN-13: 9781470453404
Teised raamatud teemal:
  • Formaat: Paperback / softback, 175 pages, kõrgus x laius: 254x178 mm, kaal: 342 g
  • Sari: Mathematical Surveys and Monographs
  • Ilmumisaeg: 28-Feb-2022
  • Kirjastus: American Mathematical Society
  • ISBN-10: 1470453401
  • ISBN-13: 9781470453404
Teised raamatud teemal:
This book is a lightly edited version of the unpublished manuscript Maximal Cohen-Macaulay modules and Tate cohomology over Gorenstein rings by Ragnar-Olaf Buchweitz. The central objects of study are maximal Cohen-Macaulay modules over (not necessarily commutative) Gorenstein rings. The main result is that the stable category of maximal Cohen-Macaulay modules over a Gorenstein ring is equivalent to the stable derived category and also to the homotopy category of acyclic complexes of projective modules. This assimilates and significantly extends earlier work of Eisenbud on hypersurface singularities. There is also an extensive discussion of duality phenomena in stable derived categories, extending Tate duality on cohomology of finite groups. Another noteworthy aspect is an extension of the classical BGG correspondence to super-algebras. There are numerous examples that illustrate these ideas. The text includes a survey of developments subsequent to, and connected with, Buchweitz's manuscript.
Introduction vii
Preface ix
Chapter 0 Notations and conventions
1(2)
Chapter 1 Perfect complexes and the stable derived category
3(2)
Chapter 2 The category of modules modulo projectives
5(2)
Chapter 3 Complete resolutions and the category of acyclic projective complexes
7(4)
Chapter 4 Maximal Cohen--Macaulay modules and Gorenstein rings
11(10)
Chapter 5 Maximal Cohen--Macaulay approximations
21(10)
Chapter 6 The Tate cohomology
31(10)
Chapter 7 Multiplicative structure, duality and support
41(24)
Chapter 8 First examples
65(16)
Chapter 9 Connection to geometry on projective super-spaces
81(28)
Chapter 10 Applications to singularities and hypersurfaces
109(12)
Appendix A Comments and errata 121(6)
Appendix B Gorenstein Noether algebras 127(8)
Appendix C Subsequent developments 135(20)
Bibliography 155(4)
Additional bibliography 159(8)
Glossary 167(6)
Index 173