Muutke küpsiste eelistusi

E-raamat: Maximal Cohen-Macaulay Modules and Tate Cohomology

Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 165,75 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book is a lightly edited version of the unpublished manuscript Maximal Cohen-Macaulay modules and Tate cohomology over Gorenstein rings by Ragnar-Olaf Buchweitz. The central objects of study are maximal Cohen-Macaulay modules over (not necessarily commutative) Gorenstein rings. The main result is that the stable category of maximal Cohen-Macaulay modules over a Gorenstein ring is equivalent to the stable derived category and also to the homotopy category of acyclic complexes of projective modules. This assimilates and significantly extends earlier work of Eisenbud on hypersurface singularities. There is also an extensive discussion of duality phenomena in stable derived categories, extending Tate duality on cohomology of finite groups. Another noteworthy aspect is an extension of the classical BGG correspondence to super-algebras. There are numerous examples that illustrate these ideas. The text includes a survey of developments subsequent to, and connected with, Buchweitz's manuscript.
Introduction vii
Preface ix
Chapter 0 Notations and conventions
1(2)
Chapter 1 Perfect complexes and the stable derived category
3(2)
Chapter 2 The category of modules modulo projectives
5(2)
Chapter 3 Complete resolutions and the category of acyclic projective complexes
7(4)
Chapter 4 Maximal Cohen--Macaulay modules and Gorenstein rings
11(10)
Chapter 5 Maximal Cohen--Macaulay approximations
21(10)
Chapter 6 The Tate cohomology
31(10)
Chapter 7 Multiplicative structure, duality and support
41(24)
Chapter 8 First examples
65(16)
Chapter 9 Connection to geometry on projective super-spaces
81(28)
Chapter 10 Applications to singularities and hypersurfaces
109(12)
Appendix A Comments and errata 121(6)
Appendix B Gorenstein Noether algebras 127(8)
Appendix C Subsequent developments 135(20)
Bibliography 155(4)
Additional bibliography 159(8)
Glossary 167(6)
Index 173