Muutke küpsiste eelistusi

Medical Image Computing and Computer-Assisted Intervention MICCAI 2016: 19th International Conference, Athens, Greece, October 17-21, 2016, Proceedings, Part II 1st ed. 2016 [Pehme köide]

Edited by , Edited by , Edited by , Edited by , Edited by
  • Formaat: Paperback / softback, 703 pages, kõrgus x laius: 235x155 mm, 238 Illustrations, black and white; XXV, 703 p. 238 illus., 1 Paperback / softback
  • Sari: Lecture Notes in Computer Science 9901
  • Ilmumisaeg: 02-Oct-2016
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3319467220
  • ISBN-13: 9783319467221
  • Pehme köide
  • Hind: 48,70 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 57,29 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 703 pages, kõrgus x laius: 235x155 mm, 238 Illustrations, black and white; XXV, 703 p. 238 illus., 1 Paperback / softback
  • Sari: Lecture Notes in Computer Science 9901
  • Ilmumisaeg: 02-Oct-2016
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3319467220
  • ISBN-13: 9783319467221
The three-volume set LNCS 9900, 9901, and 9902 constitutes the refereed proceedings of the 19th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2016, held in Athens, Greece, in October 2016. Based on rigorous peer reviews, the program committee carefully selected 228 revised regular papers from 756 submissions for presentation in three volumes. The papers have been organized in the following topical sections: Part I: brain analysis, brain analysis - connectivity; brain analysis - cortical morphology; Alzheimer disease; surgical guidance and tracking; computer aided interventions; ultrasound image analysis; cancer image analysis; Part II: machine learning and feature selection; deep learning in medical imaging; applications of machine learning; segmentation; cell image analysis; Part III: registration and deformation estimation;  shape modeling; cardiac and vascular image analysis; image reconstruction; and MR image analysis.
Machine learning and feature selection.- Deep learning in medical imaging.- Applications of machine learning.- Segmentation.- Cell image analysis.