Preface |
|
xi | |
Acknowledgments |
|
xvii | |
Authors |
|
xix | |
|
Chapter 1 Introduction and Main Concepts |
|
|
1 | (28) |
|
|
1 | (2) |
|
1.2 Classical Optimization Methods |
|
|
3 | (4) |
|
1.2.1 The Gradient Descent Method |
|
|
3 | (1) |
|
1.2.2 Gradient Computation |
|
|
4 | (1) |
|
1.2.3 Computational Example in MATLAB |
|
|
4 | (3) |
|
1.3 Metaheuristic Methods |
|
|
7 | (5) |
|
1.3.1 The Generic Procedure of a Metaheuristic Algorithm |
|
|
11 | (1) |
|
1.4 Exploitation And Exploration |
|
|
12 | (1) |
|
1.5 Probabilistic Decision And Selection |
|
|
12 | (2) |
|
1.5.1 Probabilistic Decision |
|
|
12 | (1) |
|
1.5.2 Probabilistic Selection |
|
|
13 | (1) |
|
|
14 | (5) |
|
1.6.1 Computational Implementation in MATLAB |
|
|
15 | (4) |
|
|
19 | (10) |
|
1.7.1 Computational Example in MATLAB |
|
|
22 | (3) |
|
|
25 | (3) |
|
|
28 | (1) |
|
Chapter 2 Genetic Algorithms (GA) |
|
|
29 | (36) |
|
|
29 | (2) |
|
|
31 | (12) |
|
|
33 | (2) |
|
2.2.2 Binary Crossover Operator |
|
|
35 | (1) |
|
|
36 | (1) |
|
2.2.4 Computational Procedure |
|
|
37 | (6) |
|
2.3 GA With Real Parameters |
|
|
43 | (22) |
|
2.3.1 Real-Parameter Crossover Operator |
|
|
43 | (10) |
|
2.3.2 Real-Parameter Mutation Operator |
|
|
53 | (4) |
|
2.3.3 Computational Procedure |
|
|
57 | (6) |
|
|
63 | (2) |
|
Chapter 3 Evolutionary Strategies (ES) |
|
|
65 | (48) |
|
|
65 | (1) |
|
|
66 | (2) |
|
|
66 | (1) |
|
|
66 | (1) |
|
|
67 | (1) |
|
3.3 Computational Procedure Of The (1 + 1) ES |
|
|
68 | (2) |
|
3.3.1 Description of the Algorithm (1 + 1) ES |
|
|
68 | (2) |
|
3.4 Matlab Implementation Of Algorithm (1 + 1) ES |
|
|
70 | (3) |
|
|
73 | (40) |
|
|
73 | (7) |
|
|
80 | (10) |
|
|
90 | (4) |
|
|
94 | (6) |
|
|
100 | (1) |
|
3.5.6 Adaptive (μ+ λ) ES and (μ λ) ES |
|
|
100 | (12) |
|
|
112 | (1) |
|
Chapter 4 Moth-Flame Optimization (MFO) Algorithm |
|
|
113 | (26) |
|
|
113 | (1) |
|
|
114 | (4) |
|
|
114 | (1) |
|
|
115 | (1) |
|
4.2.3 Other Mechanisms for the Balance of Exploration-Exploitation |
|
|
116 | (2) |
|
|
118 | (1) |
|
4.3 MFO Computation Procedure |
|
|
118 | (5) |
|
4.3.1 Algorithm Description |
|
|
119 | (4) |
|
4.4 Implementation Of MFO In Matlab |
|
|
123 | (3) |
|
|
126 | (13) |
|
4.5.1 Application of the MFO to Unconstrained Problems |
|
|
127 | (4) |
|
4.5.2 Application of the MFO to Problems with Constrained |
|
|
131 | (6) |
|
|
137 | (2) |
|
Chapter 5 Differential Evolution (DE) |
|
|
139 | (20) |
|
|
139 | (1) |
|
|
140 | (7) |
|
5.2.1 Population Structure |
|
|
141 | (1) |
|
|
142 | (1) |
|
|
142 | (3) |
|
|
145 | (1) |
|
|
146 | (1) |
|
5.3 Computational Process Of DE |
|
|
147 | (2) |
|
5.3.1 Implementation of the DE Scheme |
|
|
147 | (1) |
|
5.3.2 The General Process of DE |
|
|
148 | (1) |
|
5.4 Matlab Implementation Of DE |
|
|
149 | (4) |
|
5.5 Spring Design Using The De Algorithm |
|
|
153 | (6) |
|
|
157 | (2) |
|
Chapter 6 Particle Swarm Optimization (PSO) Algorithm |
|
|
159 | (24) |
|
|
159 | (1) |
|
|
160 | (3) |
|
|
160 | (1) |
|
|
161 | (1) |
|
|
162 | (1) |
|
|
163 | (1) |
|
|
163 | (1) |
|
6.3 Computing Procedure Of PSO |
|
|
163 | (5) |
|
6.3.1 Algorithm Description |
|
|
164 | (4) |
|
6.4 Matlab Implementation Of The PSO Algorithm |
|
|
168 | (3) |
|
6.5 Applications Of The PSO Method |
|
|
171 | (12) |
|
6.5.1 Application of PSO without Constraints |
|
|
171 | (4) |
|
6.5.2 Application of the PSO to Problems with Constraints |
|
|
175 | (6) |
|
|
181 | (2) |
|
Chapter 7 Artificial Bee Colony (ABC) Algorithm |
|
|
183 | (18) |
|
|
183 | (2) |
|
7.2 Artificial Bee Colony |
|
|
185 | (10) |
|
7.2.1 Initialization of the Population |
|
|
185 | (1) |
|
7.2.2 Sending Worker Bees |
|
|
185 | (1) |
|
7.2.3 Selecting Food Sources by Onlooker Bees |
|
|
186 | (1) |
|
7.2.4 Determining the Exploring Bees |
|
|
186 | (1) |
|
7.2.5 Computational Process ABC |
|
|
186 | (1) |
|
7.2.6 Computational Example in MATLAB |
|
|
187 | (8) |
|
7.3 Recent Applications Of The Abc Algorithm In Image Processing |
|
|
195 | (6) |
|
7.3.1 Applications in the Area of Image Processing |
|
|
195 | (1) |
|
7.3.1.1 Image Enhancement |
|
|
195 | (1) |
|
7.3.1.2 Image Compression |
|
|
196 | (1) |
|
|
197 | (1) |
|
|
197 | (1) |
|
7.3.1.5 Image Classification |
|
|
197 | (1) |
|
|
198 | (1) |
|
|
198 | (1) |
|
7.3.1.8 Pattern Recognition |
|
|
198 | (1) |
|
|
199 | (1) |
|
|
199 | (2) |
|
Chapter 8 Cuckoo Search (CS) Algorithm |
|
|
201 | (28) |
|
|
201 | (2) |
|
|
203 | (3) |
|
|
204 | (1) |
|
8.2.2 Replace Some Nests by Constructing New Solutions (B) |
|
|
205 | (1) |
|
8.2.3 Elitist Selection Strategy (C) |
|
|
205 | (1) |
|
8.2.4 Complete CS Algorithm |
|
|
205 | (1) |
|
8.3 CS Computational Procedure |
|
|
206 | (3) |
|
8.4 The Multimodal Cuckoo Search (MCS) |
|
|
209 | (9) |
|
8.4.1 Memory Mechanism (D) |
|
|
210 | (1) |
|
8.4.1.1 Initialization Phase |
|
|
211 | (1) |
|
|
211 | (1) |
|
8.4.1.3 Significant Fitness Value Rule |
|
|
211 | (2) |
|
8.4.1.4 Non-Significant Fitness Value Rule |
|
|
213 | (1) |
|
8.4.2 New Selection Strategy (E) |
|
|
214 | (1) |
|
8.4.3 Depuration Procedure (F) |
|
|
215 | (3) |
|
8.4.4 Complete MCS Algorithm |
|
|
218 | (1) |
|
|
218 | (11) |
|
8.5.1 Experimental Methodology |
|
|
218 | (4) |
|
8.5.2 Comparing MCS Performance for Functions f1 - f7 |
|
|
222 | (2) |
|
8.5.3 Comparing MCS Performance for Functions f8 - f14 |
|
|
224 | (2) |
|
|
226 | (3) |
|
Chapter 9 Metaheuristic Multimodal Optimization |
|
|
229 | (28) |
|
|
229 | (1) |
|
9.2 Diversity Through Mutation |
|
|
230 | (1) |
|
|
231 | (1) |
|
|
231 | (1) |
|
9.5 Sharing Function Model |
|
|
231 | (15) |
|
9.5.1 Numerical Example for Sharing Function Calculation |
|
|
234 | (2) |
|
9.5.2 Computational Example in MATLAB |
|
|
236 | (1) |
|
9.5.3 Genetic Algorithm without Multimodal Capacities |
|
|
237 | (5) |
|
9.5.4 Genetic Algorithm with Multimodal Capacities |
|
|
242 | (4) |
|
|
246 | (11) |
|
9.6.1 Computational Example in MATLAB |
|
|
248 | (4) |
|
|
252 | (3) |
|
|
255 | (2) |
Index |
|
257 | |