Muutke küpsiste eelistusi
  • Formaat - PDF+DRM
  • Hind: 58,49 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 280 pages
  • Ilmumisaeg: 14-Sep-2020
  • Kirjastus: Chapman & Hall/CRC
  • Keel: eng
  • ISBN-13: 9781000096514

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Metaheuristic algorithms are considered as generic optimization tools that can solve very complex problems characterized by having very large search spaces. Metaheuristic methods reduce the effective size of the search space through the use of effective search strategies.

Book Features:











Provides a unified view of the most popular metaheuristic methods currently in use





Includes the necessary concepts to enable readers to implement and modify already known metaheuristic methods to solve problems





Covers design aspects and implementation in MATLAB®





Contains numerous examples of problems and solutions that demonstrate the power of these methods of optimization

The material has been written from a teaching perspective and, for this reason, this book is primarily intended for undergraduate and postgraduate students of artificial intelligence, metaheuristic methods, and/or evolutionary computation. The objective is to bridge the gap between metaheuristic techniques and complex optimization problems that profit from the convenient properties of metaheuristic approaches. Therefore, engineer practitioners who are not familiar with metaheuristic computation will appreciate that the techniques discussed are beyond simple theoretical tools, since they have been adapted to solve significant problems that commonly arise in such areas.
Preface. Acknowledgments. Authors.
Chapter 1 Introduction and Main
Concepts.
Chapter 2 Genetic Algorithms (GA).
Chapter 3 Evolutionary
Strategies (ES).
Chapter 4 MothFlame Optimization (MFO) Algorithm.
Chapter 5
Differential Evolution (DE).
Chapter 6 Particle Swarm Optimization (PSO)
Algorithm.
Chapter 7 Artificial Bee Colony (ABC) Algorithm.
Chapter 8 Cuckoo
Search (CS) Algorithm.
Chapter 9 Metaheuristic Multimodal Optimization. Index.
Erik Cuevas is a professor in the Department of Electronics at the University of Guadalajara, Mexico.

Alma Rodríguez is a PhD candidate in electronics and computer science at the University of Guadalajara, Mexico.