Muutke küpsiste eelistusi

Mining the Biomedical Literature [Kõva köide]

(University of Delaware), (University of Wisconsin)
  • Formaat: Hardback, 150 pages, kõrgus x laius x paksus: 229x175x10 mm, kaal: 431 g, 16 b&w illus., 12 tables
  • Sari: Mining the Biomedical Literature
  • Ilmumisaeg: 10-Aug-2012
  • Kirjastus: MIT Press
  • ISBN-10: 0262017695
  • ISBN-13: 9780262017695
Teised raamatud teemal:
  • Formaat: Hardback, 150 pages, kõrgus x laius x paksus: 229x175x10 mm, kaal: 431 g, 16 b&w illus., 12 tables
  • Sari: Mining the Biomedical Literature
  • Ilmumisaeg: 10-Aug-2012
  • Kirjastus: MIT Press
  • ISBN-10: 0262017695
  • ISBN-13: 9780262017695
Teised raamatud teemal:

The introduction of high-throughput methods has transformed biology into a data-richscience. Knowledge about biological entities and processes has traditionally been acquired bythousands of scientists through decades of experimentation and analysis. The current abundance ofbiomedical data is accompanied by the creation and quick dissemination of new information. Much ofthis information and knowledge, however, is represented only in text form--in the biomedicalliterature, lab notebooks, Web pages, and other sources. Researchers' need to find relevantinformation in the vast amounts of text has created a surge of interest in automatedtext-analysis.

In this book, Hagit Shatkay and Mark Craven offer a concise andaccessible introduction to key ideas in biomedical text mining. The chapters cover such topics asthe relevant sources of biomedical text; text-analysis methods in natural language processing; thetasks of information extraction, information retrieval, and text categorization; and methods forempirically assessing text-mining systems. Finally, the authors describe several applications thatrecognize entities in text and link them to other entities and data resources, support the curationof structured databases, and make use of text to enable further prediction and discovery.

Acknowledgments ix
1 Introduction
1(8)
2 Fundamental Concepts in Biomedical Text Analysis
9(24)
3 Information Retrieval
33(20)
4 Information Extraction
53(24)
5 Evaluation
77(22)
6 Putting It All Together: Current Applications and Future Directions
99(16)
References 115(16)
Index 131