Muutke küpsiste eelistusi

E-raamat: Mining the Biomedical Literature

(University of Delaware), (University of Wisconsin)
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 51,17 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The introduction of high-throughput methods has transformed biology into a data-richscience. Knowledge about biological entities and processes has traditionally been acquired bythousands of scientists through decades of experimentation and analysis. The current abundance ofbiomedical data is accompanied by the creation and quick dissemination of new information. Much ofthis information and knowledge, however, is represented only in text form--in the biomedicalliterature, lab notebooks, Web pages, and other sources. Researchers' need to find relevantinformation in the vast amounts of text has created a surge of interest in automatedtext-analysis.

In this book, Hagit Shatkay and Mark Craven offer a concise andaccessible introduction to key ideas in biomedical text mining. The chapters cover such topics asthe relevant sources of biomedical text; text-analysis methods in natural language processing; thetasks of information extraction, information retrieval, and text categorization; and methods forempirically assessing text-mining systems. Finally, the authors describe several applications thatrecognize entities in text and link them to other entities and data resources, support the curationof structured databases, and make use of text to enable further prediction and discovery.

Acknowledgments ix
1 Introduction
1(8)
2 Fundamental Concepts in Biomedical Text Analysis
9(24)
3 Information Retrieval
33(20)
4 Information Extraction
53(24)
5 Evaluation
77(22)
6 Putting It All Together: Current Applications and Future Directions
99(16)
References 115(16)
Index 131