Muutke küpsiste eelistusi

Mixing: Properties and Examples Softcover reprint of the original 1st ed. 1994 [Pehme köide]

  • Formaat: Paperback / softback, 142 pages, kõrgus x laius: 235x155 mm, kaal: 285 g, 5 Illustrations, black and white; XII, 142 p. 5 illus., 1 Paperback / softback
  • Sari: Lecture Notes in Statistics 85
  • Ilmumisaeg: 11-Mar-1994
  • Kirjastus: Springer-Verlag New York Inc.
  • ISBN-10: 0387942149
  • ISBN-13: 9780387942148
Teised raamatud teemal:
  • Pehme köide
  • Hind: 132,08 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 155,39 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 142 pages, kõrgus x laius: 235x155 mm, kaal: 285 g, 5 Illustrations, black and white; XII, 142 p. 5 illus., 1 Paperback / softback
  • Sari: Lecture Notes in Statistics 85
  • Ilmumisaeg: 11-Mar-1994
  • Kirjastus: Springer-Verlag New York Inc.
  • ISBN-10: 0387942149
  • ISBN-13: 9780387942148
Teised raamatud teemal:
Mixing is concerned with the analysis of dependence between sigma-fields defined on the same underlying probability space. It provides an important tool of analysis for random fields, Markov processes, central limit theorems as well as being a topic of current research interest in its own right. The aim of this monograph is to provide a study of applications of dependence in probability and statistics. It is divided in two parts, the first covering the definitions and probabilistic properties of mixing theory. The second part describes mixing properties of classical processes and random fields as well as providing a detailed study of linear and Gaussian fields. Consequently, this book will provide statisticians dealing with problems involving weak dependence properties with a powerful tool.

Muu info

Springer Book Archives
1. General properties.- 1.1. Dependence of ?-fields.- 1.2. Basic tools.- 1.3. Mixing.- 1.4. Tools.- 1.5. Central limit theorem.-
2. Examples.- 2.1. Gaussian random fields.- 2.2. Gibbs fields.- 2.3. Linear fields.- 2.4. Markov processes.- 2.5. Continuous time processes.