Muutke küpsiste eelistusi

MTBE Remediation Handbook 2004 ed. [Kõva köide]

Edited by , Edited by
  • Formaat: Hardback, 670 pages, kõrgus x laius: 235x155 mm, kaal: 1226 g, XXXIX, 670 p., 1 Hardback
  • Ilmumisaeg: 31-May-2004
  • Kirjastus: Amherst Scientific Publishers
  • ISBN-10: 1884940293
  • ISBN-13: 9781884940293
Teised raamatud teemal:
  • Kõva köide
  • Hind: 112,60 €*
  • * saadame teile pakkumise kasutatud raamatule, mille hind võib erineda kodulehel olevast hinnast
  • See raamat on trükist otsas, kuid me saadame teile pakkumise kasutatud raamatule.
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Lisa soovinimekirja
  • Formaat: Hardback, 670 pages, kõrgus x laius: 235x155 mm, kaal: 1226 g, XXXIX, 670 p., 1 Hardback
  • Ilmumisaeg: 31-May-2004
  • Kirjastus: Amherst Scientific Publishers
  • ISBN-10: 1884940293
  • ISBN-13: 9781884940293
Teised raamatud teemal:
The MTBE Remediation Handbook is a comprehensive and up-to date compendium of knowledge of the technology and risk management of MTBE contamination. This handbook examines the remediation of MTBE in existing spills: exploring the myths which act as impediments to successful clean-up techniques, and offering effective solutions. Experience in the last decade has shown that prompt source control is key to minimizing impacts and remediation costs. Successful treatment of contamination depends on the selection of the appropriate technology, well done site characterization, sound engineering design and implementation. The focus of this volume is the remediation of MTBE in existing spills. Section I of the MTBE Remediation Handbook features an in-depth look at the history, properties, occurrence and assessment of MTBE. Section II discusses applicable remediation technologies. Section III offers remediation case studies. The MTBE Remediation Handbook presents environmental scientists and cleanup professionals an indispensable resource on the handling of MTBE contamination worldwide.
Acknowledgment v
Preface vii
List of Figures
xxv
List of Tables
xxxv
SECTION I---MTBE HISTORY, PROPERTIES, OCCURRENCE, AND ASSESSMENT
Introduction
3(8)
Ellen E. Moyer
History of MTBE Use
3(3)
Tert Butyl Alcohol
6(1)
Gasoline Releases
6(3)
Underground Storage Tank (UST) Leaks and Overfills
6(1)
Spills
7(1)
Use in Watercraft
7(2)
Volatilization
9(1)
Summary
9(1)
references
9(2)
Chemical and Physical Properties
11(8)
Ellen E. Moyer
Introduction
11(1)
Boiling Temperature
11(3)
Specific Gravity
14(1)
Water Solubility
14(1)
Vapor Pressure
14(1)
Vapor Density
15(1)
Adsorption
15(1)
Henry's Law Constant
16(1)
Summary
16(2)
References
18(1)
Fate and Transport of MTBE and Other Gasoline Components
19(44)
John T. Wilson
Transport and Fate of Vapors of MTBE in the Unsaturated Zone
20(1)
Partitioning of MTBE from Gasoline Directly to Ground Water
21(4)
Separation of MTBE from BTEX Along a Flow Path
25(3)
Role of Dilution and Dispersion
28(3)
Role of Biodegradation of MTBE
31(5)
Production and Biodegradation of TBA
36(3)
False Attenuation: Missing the Plume with Monitoring Wells
39(6)
Missing the Plume: Plume Diving Behavior in Uniform Sand Aquifers
45(2)
Two Possible Life Cycles of Plumes
47(2)
The Plume Comes to Steady State, Then Recedes Back to the LNAPL
49(1)
The Plume Fails to Come to Steady State, and the Hot Spot Moves Downgradient
50(6)
Overview of Factors That Lead to Long MTBE Plumes
56(1)
Disclaimer
57(1)
References
57(6)
MTBE Occurrence in Surface and Ground Water
63(10)
James A. M. Thomson
James W. McKinley
Robert C. Harris
Alwyn J. Hart
Peter Hicks
David K. Ramsden
Barbara Wilson
Introduction
63(1)
MTBE and the USGS NAWQA Program
63(1)
National MTBE Survey and the Northeastern and Mid-Atlantic States Study
64(1)
Northeast States for Coordinated Air Use Management (NESCAUM)
65(1)
Midwestern States Study
65(1)
Individual State Studies
66(1)
MTBE Occurence in England and Wales
66(1)
Plume Length Studies
66(1)
History in California
67(1)
Conclusions
68(2)
References
70(3)
Site Assessment
73(20)
Nancy E. Milkey
Historical Assessment
73(1)
Identification of Receptors
74(1)
Initial Subsurface Investigation
74(3)
Utility Clearance
74(1)
Boring Advancement
74(2)
Well Development
76(1)
Ground Water Sample Collection
77(1)
Determination of Ground Water Flow Direction
77(1)
Methods of Soil and Ground Water Sample Collection
77(8)
Drilling and Soil Sample Collection
78(2)
Ground Water Sample Collection
80(2)
Soil and Ground Water Analytical Methods
82(2)
Geophysics
84(1)
Detailed Assessment
85(3)
Tracers
86(1)
Aquifer Tests
86(1)
Evaluation of Soil Gas and Indoor Air Migration Pathways
86(1)
Carbon Isotope Analysis
87(1)
Identifying Migration Pathways
88(2)
References
90(3)
Laboratory Analysis of Oxygenated Gasoline Constituents
93(28)
Robert J. Pirkle
Patrick W. McLoughlin
Introduction
93(1)
Properties of Oxygenated Gasoline Components
94(1)
Sample Preservation Methods
95(5)
Sample Preparation Methods
100(3)
Separation of Volatiles from Aqueous Solution
100(2)
Concentration of Separated Volatiles
102(1)
Measurement Methods
103(2)
Optimum Methods for Analysis of Fuel Oxygenates in Ground Water
105(10)
Conclusions
115(4)
References
119(2)
Risk Assessment
121(50)
Pamela R.D. Williams
Patrick J. Sheehan
Introduction
121(2)
Evaluating Human Health Risks
123(25)
Hazard Identification
123(5)
Dose-Response Assessment
128(4)
Exposure Assessment
132(6)
Risk Characterization
138(10)
Evaluating Ecological Risks
148(2)
European Risk Assessment of MTBE
150(1)
Risk Analysis Framework
151(1)
Summary
152(2)
References
154(17)
SECTION II---APPLICABLE REMEDIATION TECHNOLOGIES
Receptor Protection
171(18)
Jonathan Greene
Theodore R. Davis
David K. Ramsden
Introduction and Major Phases
171(3)
Receptors
173(1)
Receptor Threat
174(1)
Receptor Protection
174(1)
Technologies
174(12)
General
174(2)
Vapor Management
176(1)
Water Management
177(8)
Soil Management
185(1)
Conclusions
186(1)
References
186(3)
Source Control
189(12)
Theodore R. Davis
Jonathan Greene
David K. Ramsden
Introduction
189(1)
Sources
189(2)
Tankhold
190(1)
Unsaturated Soils
190(1)
LNAPL
190(1)
Saturated Soils
191(1)
Remediation Technologies
191(7)
Tankhold
191(1)
Unsaturated Soils
191(1)
LNAPL
191(6)
Saturated Soils
197(1)
Conclusions
198(1)
References
199(2)
Soil Vapor Extraction, Bioventing, and Air Sparging
201(22)
Brian D. Symons
Jonathan Greene
Gas-Based Technologies
201(7)
Soil Vapor Extraction
201(2)
Air Sparging
203(1)
Bioventing/Biosparging
203(5)
Contaminant Considerations
208(1)
Volatility
208(1)
Biodegradability
208(1)
Soil Considerations
209(1)
Soil Permeability
209(1)
Water Saturation
209(1)
NAPL Saturation
210(1)
Geologic Considerations
210(2)
Fine-Grained Lenses
211(1)
Diversion of Airflow
211(1)
Heterogeneous Soils
211(1)
Airflow Considerations
212(1)
Maximizing Biodegradation
212(1)
Maximizing Volatilization
212(1)
Airflow and Pressure Relationships
213(1)
Zone of Influence and Well Spacing
213(3)
Modeling and Pilot Testing
216(1)
Summary of Extraction System Effectiveness
216(1)
Summary of Injection System Effectiveness
217(1)
Design Considerations
217(3)
Technology Selection
217(1)
Off-Gas Treatment
217(1)
Enhancements
218(1)
Pulsed Injection
218(1)
Injecting Gases Other than Air
219(1)
Adding Heat (Thermal)
219(1)
Conclusions
220(1)
References
220(3)
In Situ Chemical Oxidation
223(20)
Kara L. Kelley
Michael C. Marley
Kenneth L. Sperry
Introduction
223(1)
Hydrogen Peroxide
224(4)
Description of Process
224(2)
Proven Effectiveness in Field or Laboratory
226(1)
Practical Design Considerations
227(1)
Ozone
228(3)
Description of Process
228(1)
Proven Effectiveness in Field or Laboratory
229(2)
Practical Design Considerations
231(1)
Permanganate
231(2)
Description of Process
231(1)
Proven Effectiveness in Field or Laboratory
232(1)
Practical Design Considerations
233(1)
Persulfate
233(1)
Description of Process
233(1)
Proven Effectiveness in Field or Laboratory
234(1)
Practical Design Considerations
234(1)
Ultrasound
234(3)
Description of Process
234(1)
Proven Effectiveness in Field or Laboratory
235(1)
Ultrasound with Ozone
236(1)
Practical Design Considerations
236(1)
ISCO Costs
237(2)
Hydrogen Peroxide
237(1)
Ozone
237(1)
Permanganate
238(1)
Persulfate
238(1)
Ultrasound
239(1)
References
239(4)
Aerobic In Situ Bioremediation
243(22)
John T. Wilson
Microbiology and Biochemistry of Aerobic MTBE Biodegradation
244(2)
Kinetics of Metabolism
246(2)
Biodegradation of MTBE, Petroleum Hydrocarbons, and Consumption of Oxygen
248(3)
Prospects for Biodegradation of MTBE in the Field by Native Microorganisms
251(2)
Remedial Technology for Ground Water
253(7)
Disclaimer
260(1)
References
260(5)
Anaerobic In Situ Bioremediation
265(14)
Kevin T. Finneran
Derek R. Lovley
Introduction
265(1)
Anaerobic Processes in Subsurface Sediment
265(2)
Anaerobic Bioremediation Strategies
267(1)
Anaerobic MTBE Biodegradation with Different Terminal Electron Acceptors
268(4)
Nitrate Reduction
268(1)
Fe(III) Reduction
269(2)
Sulfate Reduction
271(1)
Methanogenic Conditions
272(1)
Anaerobic TBA Biodegradation
272(1)
Implications for MTBE and TBA Bioremediation
273(3)
References
276(3)
Phytoremediation of MTBE---A Review of the State of the Technology
279(10)
Lee A. Newman
Charles W. Arnold
Case Studies
280(6)
University of Washington
280(2)
Kansas State University
282(1)
University of Iowa
283(1)
University of Colorado
284(1)
State of California Water Resources Control Board
285(1)
Conclusions and Future Work
286(1)
References
287(2)
Ground Water Recovery and Treatment
289(40)
Tie Li
Raaj U. Patel
David K. Ramsden
Jonathan Greene
Perspective of Ground Water Recovery and Treatment
289(1)
Relationship to Potable Water
290(1)
Ground Water Recovery
291(1)
General
291(1)
Extraction
291(1)
Design
292(4)
Design Components
292(1)
Well Array Design
293(1)
Capture Zone Analysis
293(1)
Materials of Construction
293(1)
Typical Extraction Well Construction
293(1)
Trench Construction
294(1)
Optimization
295(1)
Reinjection/Infiltration
296(1)
Specialized Extraction Systems
296(1)
MTBE Specific Issues
297(1)
Ground Water Treatment
298(5)
Granular Activated Carbon (Liquid Phase)
299(4)
Interferences
303(3)
Iron
303(1)
Manganese
304(1)
Total Organic Carbon
304(1)
Mineralization
304(1)
Coagulants and Additives
305(1)
Turbidity
305(1)
Co-contaminants
305(1)
Biological Growth
305(1)
Costs
306(1)
Resin Adsorption
306(2)
Air Stripping
308(1)
Stripping Technologies
308(3)
Packed Tower Stripper
308(1)
Low-Profile Air Stripper
309(1)
Diffused Aeration Stripper
309(1)
Mechanical Stripper
310(1)
Off-Gas Treatment
311(3)
Thermal and Catalytic Thermal Oxidation
311(1)
Granular Activated Carbon
312(1)
Biofilters
313(1)
Off-Gas Treatment Costs
314(1)
Interferences for Stripping
314(1)
Iron
314(1)
Manganese
315(1)
Mineralization
315(1)
Temperature
315(1)
MTBE Applications
315(1)
Bioreactors
315(5)
Activated Sludge
316(1)
Fixed-Film Reactors
317(2)
Fluidized Bed Bioreactor
319(1)
Membrane Separation (Reverse Osmosis)
320(2)
Advanced Oxidation Processes
322(1)
Types of AOPS
322(2)
Fenton's Reagent
322(1)
Peroxide --- Ozone
322(1)
Cavitation/Sonication
323(1)
UV Driven Systems
323(1)
Electron Beams
323(1)
Limitations of AOPS
324(1)
Advantages of AOPS
325(1)
Other AOPS
325(1)
Permanganate
325(1)
Costing Pump-and-Treat Systems
325(2)
References
327(2)
Monitored Natural Attenuation of MTBE
329(20)
Bruce E. Rittmann
Background on Monitored Natural Attenuation
329(1)
The NRC Strategy for Evaluating Natural Attenuation
330(1)
MTBE and the NRC Report
331(1)
Recent Findings on MTBE and Natural Attenuation
332(5)
Aerobic Biodegradation
332(4)
Field Experience
336(1)
SAB Report
337(1)
Evidence on Anaerobic Biodegradation of MTBE
337(1)
Updating the NRC guidance for Natural Attenuation of MTBE
337(5)
Scientific Understanding
338(1)
Likelihood of Success
338(1)
Footprints
338(4)
Conclusions
342(1)
References
343(6)
SECTION III---REMEDIATION CASE STUDIES
Remedial Costs for MTBE in Soil and Ground Water
349(12)
Barbara H. Wilson
John T. Wilson
Introduction
349(1)
Cost of Cleanup
350(1)
Cost Comparisons for MTBE and BTEX Remediations
351(2)
South Carolina Cost Data
353(1)
Remedial Technologies Used at USTS in New York State
354(1)
Efficiency of Remedial Technologies
355(3)
Summary
358(1)
Disclaimer
359(1)
Acknowledgment
359(1)
References
360(1)
Remediation Experiences in Finland
361(16)
Martti R. Suominen
Nancy E. Milkey
Background
361(1)
Legislation for Soil and Ground Water Protection in Finland
361(1)
Geology
361(1)
Aquifers and Water Service in Finland
362(1)
Gasoline Usage
362(1)
Fuel Handling at Retail Stations --- Technology and Practices
362(1)
Practices in Soil and Ground Water Investigation and Risk Assessment at NESTE Sites
363(1)
Practices in Soil and Ground Water Remediation at NESTE Sites
364(4)
Cost of Remediation of Retail Sites in Finland
366(2)
Case Studies
368(6)
Case 1 --- Traditional Practices, High Hopes, and Not Enough Information
368(3)
Case 2 --- Traditional Approach and Methods Applied Successfully to Remediate a Service Station Site and Natural Spring
371(2)
Case 3 --- Emergency Remediation Operation
373(1)
Forensic Findings --- The Reasons for the Releases
374(1)
Lessons Learned
375(2)
USEPA Case Studies Database for MTBE Remediation
377(18)
David K. Ramsden
Tie Li
Purpose of Database
377(11)
Site Selection
388(2)
Site Characteristics
390(1)
Technology Variety
390(1)
Co-Contaminant Variety
390(1)
Trends
390(1)
Summary
391(3)
References
394(1)
Remediation of Realeases Containing MTBE at Gasoline Station Sites---ENSR International's Experience
395(12)
Robert M. Cataldo
Why MTBE Makes a Difference and How Do We Exploit Its Properties for Remediation
396(1)
Remediation Technologies
396(1)
Recovery of MTBE in Soil
396(1)
Recovery of MTBE in Ground Water
397(1)
Treatment of MTBE
397(1)
Driving Forces to Site Remediation
397(1)
Technology Sequencing
398(1)
ENSR's Experience Remediating MTBE
398(1)
Site-Specific Conditions
399(4)
Remediation Selection Factors
403(1)
Remediation Costs
404(1)
Future Trends in Remediation
404(1)
Compliance, Early Detection, and Quick Response
404(1)
Conclusions
405(2)
Source Control and Point of Entry Treatment at a Massachusetts Site
407(12)
Christopher G. Mariano
Introduction
407(1)
Site Description
407(1)
Release History
408(1)
Site Hydrogeology
408(2)
Surficial Geology
408(1)
Bedrock Geology
408(2)
Hydrogeological Parameters
410(1)
Nature and Extent of Contamination
410(1)
Soil
410(1)
Ground Water
411(1)
Fate and Transport
411(2)
Receptors
413(1)
Ecological
413(1)
Human
413(1)
Exposure Potential
413(1)
Ecological
413(1)
Human
414(1)
Required Cleanup Levels and Timeframes
414(1)
Soil
414(1)
Ground Water
414(1)
Cleanup Timeframe
415(1)
Remedial Actions
415(1)
Source Removal
415(1)
Point of Entry Treatment
415(1)
Costs
416(1)
Timeline
416(1)
References
417(2)
Physical Treatment at a New Hampshire Site
419(16)
David L. Espy
Introduction
419(1)
Site Description
419(1)
Release History
420(1)
Site Hydrogeology
420(1)
Surficial Geology
420(1)
Bedrock Geology
420(1)
Hydrogeological Parameters
421(1)
Nature and Extent of Contamination
421(3)
Soil
421(1)
Ground Water
421(3)
Fate and Transport
424(3)
Receptors
427(1)
Required Cleanup Levels and Timeframes
428(1)
Ground Water
428(1)
Soil
428(1)
Indoor Air
428(1)
Cleanup Timeframe
429(1)
Remedial Actions
429(3)
Immediate Response Actions
429(1)
Source Removal
430(1)
Physical Treatment
430(1)
SVE System
431(1)
Ground Water Recovery
431(1)
Air Sparging System
432(1)
Monitoring and Enhanced Bioremediation
432(1)
Costs
432(1)
Timeline
433(1)
References
433(2)
Physical Treatment at a Massachusetts Site
435(10)
Christopher G. Mariano
Introduction
435(1)
Site Description
435(2)
Release History
437(1)
Site Hydrogeology
437(1)
Surficial Geology
437(1)
Bedrock Geology
437(1)
Hydogeological Parameters
438(1)
Nature and Extent of Contamination
438(1)
Soil
438(1)
Ground Water
438(1)
Fate and Transport
439(1)
Receptors
440(1)
Ecological
440(1)
Human
440(1)
Exposure Potential
441(1)
Ecological
441(1)
Human
441(1)
Required Cleanup Levels and Timeframes
441(1)
Soil
441(1)
Ground Water
442(1)
Cleanup Timeframe
442(1)
Remedial Actions
442(1)
Source Removal
442(1)
Physical Treatment
442(1)
Costs
443(1)
Timeline
443(1)
References
443(2)
Strategic Pumping to Divert an MTBE/BTEX Plume from Municipal Water Supply Wells
445(10)
Evan T. Johnson
Tracy J. Adamski
Michael Scherer
Introduction
445(1)
Site Description
446(1)
Release History
446(2)
Site Hydrogeology
448(2)
Surficial Geology
448(1)
Bedrock Geology
448(1)
Hydrogeological Parameters
448(2)
Nature and Extent of Contamination
450(1)
Receptors
451(1)
Remedial Actions
452(1)
Cleanup Levels
452(1)
Costs
453(1)
Timeline
453(1)
References
453(2)
Ozone Microbubble Sparging at a California Site
455(18)
William B. Kerfoot
Paul LeCheminant
Treatment Technology Overview --- Ozone Oxidation and Microbubble Treatment
455(3)
Theory
457(1)
Oxidation Chemical Mechanisms
457(1)
Oxidant Application and Spread
458(1)
Site Description and Release History
458(4)
Previous Environmental Work
459(3)
Site Conditions
462(2)
Expected Oxidant Demand
464(1)
Stoichiometric VOC Demand
464(1)
Oxidizable Metals Demand
464(1)
Soil Demand
464(1)
Other Organics
465(1)
Total Ozone Demand
465(1)
Projected Time to Treat (Duration) Computation --- Mass Basis
465(1)
Monitoring The VOC Decay
465(1)
Field Results
465(5)
Site Cost Comparison
470(1)
Conclusions and Recommendations
470(1)
References
471(2)
MTBE Cleanup Technology Evaluations at the Port Hueneme NETTS
473(30)
Ernest E. Lory
Ground Water Circulation Well Environmental Cleanup Systems
475(2)
In Situ Air Sparging System
477(2)
Extraction of MTBE by a Hollow Fiber Membrane
479(3)
High Energy Electron Injection
482(3)
HiPOx Advanced Oxidation for the Remediation of MTBE
485(2)
In Situ Bioremediation of MTBE
487(2)
Direct Injection of a Bacterial Culture to Biodegrade MTBE-Impacted Ground Water
489(3)
Large-Scale Biobarrier Demonstration
492(3)
In Situ Remediation of MTBE Impacted Aquifer Using Propane Biostimulation
495(3)
Natural Attenuation of MTBE in An Anaerobic Ground Water Plume
498(1)
Natural Attenuation of MTBE in Ground Water Under Methanogenic Conditions
499(4)
Bioremediation at a New Jersey Site Using Propane-Oxidizing Bacteria
503(14)
Robert J. Steffan
Yassar H. Farhan
Charles W. Condee
Scott Drew
Introduction
503(1)
Methodology
504(4)
Site Characterization
504(2)
Microcosm Testing
506(1)
Field-Scale System Implementation and Operation
507(1)
Results
508(7)
Microcosm Studies
508(1)
Field Evaluation
508(7)
In Situ Biotreatment Summary
515(1)
Technology Costs
515(1)
References
516(1)
Application of an In Situ Bioremedy Biobarrier at a Retail Gas Station
517(12)
Gerard E. Spinnler
Paul M. Maner
Jeffrey D. Stevenson
Joseph P. Salanitro
Jennifer Bothwell
John Hickey
Site Location and Geology/Hydrogeology
517(1)
Nature and Extent of Contamination and Potential Receptors
517(1)
Remediation
518(2)
Biobarrier
518(1)
Components of Biobarrier System
518(1)
Microbes
518(1)
Oxygen
518(2)
Monitoring Well System
520(1)
Site Application
520(4)
Field Pilot/Evaluation Test
520(1)
Microcosm Evaluation
520(1)
Oxygen Delivery
521(1)
MC Delivery
522(2)
Performance of the Bioremedy Biobarrier
524(1)
System Costs
525(2)
Timeline
527(1)
References
527(2)
Ground Water Recovery and Bioreactor Treatment at a California Site
529(12)
Joseph E. O'Connell
Steve M. Zigan
Summary
529(2)
Site History
529(1)
Hydrology
530(1)
Remedial Activities
531(8)
Soil Excavation
532(1)
Overpurging
532(1)
Interim Enhanced Vacuum Extraction
532(1)
Remedial Design
532(7)
Results
539(2)
Natural Attenuation of Tert Butyl Alcohol at a Texas Chemical Plant
541(20)
Michael J. Day
Terry Gulliver
Introduction
541(1)
Previous Work on TBA Degradation
541(1)
Influence of TBA Properties on Natural Attenuation
542(1)
Site Description
543(3)
Plant II TBA Plume
546(1)
Natural Attenuation of TBA in the Plant II Area Plume
547(7)
Role of Diffusion in Plant II Area Plume Natural Attenuation
549(2)
Use of Carbon Isotopes to Document TBA Biodegradation
551(1)
Mechanisms of TBA Biodegradation
552(2)
Estimation of Natural Biodegradation Rates
554(4)
Conclusions
558(1)
Future Work
558(1)
References
558(3)
Natural Attenuation of Benzene and MTBE at Four Midwestern U.S. Sites
561(20)
Joseph Robb
Ellen E. Moyer
Trend Analysis Approach
562(2)
Geochemical Data
564(1)
Site A
564(4)
Hydrogeology
565(1)
Seasonality
565(1)
Trends
566(2)
Geochemical Conditions
568(1)
Site B
568(2)
Site C
570(2)
Site D
572(3)
Conclusions
575(2)
Recommendations
577(1)
References
578(3)
APPENDICES
Appendix A---MTBE Occurrence in Surface and Ground Water
581(66)
James A.M. Thomson
Introduction
581(1)
MTBE and the USGS's NAWQA Program
581(21)
The NAWQA Program
581(1)
Program Status
582(1)
MTBE Data
583(9)
Patterns
592(7)
Conclusions
599(1)
Limitations
600(2)
Summary
602(1)
MTBE Occurrence in the United States
602(19)
National MTBE Survey
602(1)
Northeastern and Mid-Atlantic States
603(1)
Northeast States for Coordinated Air Use Management (NESCAUM)
604(7)
Midwestern States Study
611(5)
Conclusions of the Midwestern States Study
616(1)
Additional State Studies
616(5)
Conclusions
621(1)
MTBE Occurrence in England and Wales
621(6)
Fuel Background
621(1)
Water Background
622(1)
Study Method
622(2)
Risk Assessment
624(1)
Conclusions
624(2)
Impacts
626(1)
Further Work
626(1)
Acknowledgement
627(1)
Plume Length Studies (Texas, Florida, and California)
627(8)
Texas
628(1)
Florida
629(1)
California
630(1)
History of MTBE in California
631(4)
Comparison among Texas, Florida, and California
635(1)
Comparison of Plume Lengths for MTBE and BTEX at 212 South Carolina Sites
635(3)
Conclusions
638(2)
References
640(5)
Acronyms
645(2)
Appendix B---Primary Author Contact Information
647(6)
Acronyms
653