Foreword I |
|
xxi | |
Foreword II |
|
xxv | |
Preface |
|
xxvii | |
List of Contributors |
|
xxxi | |
List of Figures |
|
xxxvii | |
List of Tables |
|
xlix | |
List of Abbreviations |
|
liii | |
Part I: Introduction |
|
|
1 Water Scarcity: Where We Stand |
|
|
3 | (10) |
|
|
|
3 | (3) |
|
1.2 Global Drivers and Trends |
|
|
6 | (3) |
|
|
6 | (1) |
|
|
6 | (1) |
|
1.2.3 Water as a Human Right |
|
|
7 | (1) |
|
|
8 | (1) |
|
1.3 "Food-Energy-Water" Nexus |
|
|
9 | (1) |
|
|
9 | (1) |
|
|
10 | (3) |
|
2 Alternative Freshwater Solutions to Desalination |
|
|
13 | (28) |
|
|
|
|
|
|
13 | (3) |
|
|
14 | (1) |
|
2.1.2 Sustainable Alternatives to Desalination |
|
|
15 | (1) |
|
2.1.3 Smart and Innovative Alternatives |
|
|
16 | (1) |
|
2.2 Integrated Freshwater Management Solutions |
|
|
16 | (5) |
|
|
16 | (1) |
|
2.2.2 Solutions for Delta Areas and Seasonal Dry Areas in General |
|
|
17 | (1) |
|
2.2.3 Solutions for Agricultural Areas |
|
|
18 | (2) |
|
2.2.4 Solutions for Natural Reserves |
|
|
20 | (1) |
|
2.2.5 Solutions for the Built Environment |
|
|
20 | (1) |
|
2.2.6 An Integrated Solution: Freshwater Wetlands |
|
|
20 | (1) |
|
2.3 Rainwater Harvesting: Capture and Use of Rain and Storm Water |
|
|
21 | (10) |
|
2.3.1 Introduction and Principles |
|
|
21 | (2) |
|
2.3.2 Benefits and Challenges of Rainwater Harvesting |
|
|
23 | (3) |
|
2.3.3 Components of a Rainwater Harvesting System |
|
|
26 | (1) |
|
2.3.3.1 Rainwater harvesting using natural components |
|
|
27 | (1) |
|
2.3.4 Calculating the Potential of Rainwater Harvesting |
|
|
28 | (2) |
|
2.3.5 Additional Information |
|
|
30 | (1) |
|
2.4 Reclamation of Fresh Used Water (Greywater Reuse) |
|
|
31 | (5) |
|
|
31 | (1) |
|
|
31 | (2) |
|
2.4.3 Used Water Treatment Technologies |
|
|
33 | (1) |
|
2.4.3.1 Physical-chemical used treatment systems |
|
|
33 | (1) |
|
2.4.3.2 Biological used water treatment systems |
|
|
35 | (1) |
|
|
36 | (1) |
|
|
37 | (4) |
|
3 Fundamentals of Desalination Technology |
|
|
41 | (26) |
|
|
|
|
41 | (4) |
|
|
45 | (2) |
|
|
47 | (4) |
|
3.4 Desalination Technologies |
|
|
51 | (10) |
|
3.4.1 Thermal (and Evaporative) Technologies |
|
|
51 | (1) |
|
3.4.1.1 Multi-Stage Flash Distillation (MSF) |
|
|
51 | (1) |
|
3.4.1.2 Multi-Effect Distillation (MED) |
|
|
52 | (1) |
|
3.4.1.3 Thermal Vapor Compression (TVC) |
|
|
53 | (1) |
|
3.4.1.4 Mechanical Vapor Compression (MVC) |
|
|
54 | (1) |
|
3.4.1.5 Membrane Distillation (MD) |
|
|
54 | (1) |
|
|
55 | (1) |
|
3.4.2 Membrane Technologies |
|
|
55 | (1) |
|
3.4.2.1 Reverse Osmosis (RO) |
|
|
55 | (1) |
|
3.4.2.2 Forward Osmosis (FO) |
|
|
57 | (1) |
|
3.4.2.3 Electrodialysis (ED) and Electrodialysis Reversal (EDR) |
|
|
57 | (1) |
|
|
58 | (1) |
|
3.4.3.1 Hydrate Formation |
|
|
58 | (1) |
|
3.4.3.2 Ion Exchange (IX) |
|
|
58 | (1) |
|
3.4.3.3 Capacitive DeIonizaiton (CDI) |
|
|
59 | (1) |
|
3.4.3.4 Solvent Extraction |
|
|
60 | (1) |
|
3.4.3.5 De-Humidification |
|
|
60 | (1) |
|
|
60 | (1) |
|
|
61 | (1) |
|
|
62 | (5) |
|
4 Water Chemistry and Desalinated Water Quality |
|
|
67 | (28) |
|
|
|
|
|
67 | (6) |
|
|
68 | (1) |
|
|
69 | (1) |
|
4.1.3 Calcium and Magnesium |
|
|
70 | (1) |
|
4.1.4 Fluoride and Other Supplements |
|
|
70 | (2) |
|
|
72 | (1) |
|
4.1.6 Potassium and Sodium |
|
|
73 | (1) |
|
|
73 | (3) |
|
|
76 | (3) |
|
4.4 Sodium Adsorption Ratio |
|
|
79 | (2) |
|
4.5 Acidity and Buffering Capacity |
|
|
81 | (1) |
|
|
82 | (3) |
|
|
85 | (4) |
|
|
89 | (1) |
|
|
90 | (5) |
Part II: Unit Operations |
|
|
|
95 | (60) |
|
|
|
95 | (1) |
|
5.2 Multi-Effect Distillation (MED) |
|
|
96 | (7) |
|
5.2.1 Types of MED Tube Arrangements |
|
|
97 | (1) |
|
5.2.1.1 Horizontal tube arrangement |
|
|
97 | (1) |
|
5.2.1.2 Vertical tube arrangement |
|
|
98 | (1) |
|
5.2.1.3 Vertically stacked tube bundles |
|
|
98 | (1) |
|
5.2.2 Conventional MED Process |
|
|
98 | (3) |
|
5.2.3 Multi-Effect Distillation with Thermal Vapor Compression (MED-TVC) |
|
|
101 | (1) |
|
5.2.3.1 MED-TVC process description |
|
|
102 | (1) |
|
5.3 Multi-Stage Flash (MSF) |
|
|
103 | (7) |
|
|
104 | (3) |
|
5.3.2 MSF Condenser Tube Configurations |
|
|
107 | (2) |
|
5.3.3 MSF Process Description |
|
|
109 | (1) |
|
5.4 Vapor Compression Distillation (VCD) |
|
|
110 | (4) |
|
5.4.1 Mechanical Vapor Compression (MVC) |
|
|
112 | (1) |
|
5.4.2 Thermal Vapor Compression (TVC) |
|
|
113 | (1) |
|
5.5 Other Thermal Processes |
|
|
114 | (16) |
|
|
114 | (5) |
|
|
119 | (5) |
|
5.5.3 Humidification-Dehumidification |
|
|
124 | (2) |
|
5.5.4 Membrane Distillation |
|
|
126 | (1) |
|
5.5.4.1 Direct Contact Membrane Distillation (DCMD) |
|
|
127 | (1) |
|
5.5.4.2 Air Gap Membrane Distillation (AGMD) |
|
|
127 | (1) |
|
5.5.4.3 Vacuum Membrane Distillation (VMD) |
|
|
127 | (1) |
|
5.5.4.4 Sweep Gas Membrane Distillation (SGMD) |
|
|
128 | (2) |
|
5.6 Operational Experience of Thermal Desalination Processes |
|
|
130 | (19) |
|
5.6.1 Pretreatment and Scale Control |
|
|
130 | (4) |
|
5.6.2 Efficiency of Thermal Desalination Processes |
|
|
134 | (1) |
|
5.6.3 Design Experience of Large MSF and MED-TVC Plants |
|
|
135 | (4) |
|
5.6.4 Impact of Non-Condensable Gases (NCG) |
|
|
139 | (3) |
|
|
142 | (1) |
|
5.6.6 Maintenance Procedures |
|
|
143 | (5) |
|
5.6.7 Evaporator Start-Up |
|
|
148 | (1) |
|
|
149 | (6) |
|
6 Membrane Desalination Technologies |
|
|
155 | (46) |
|
|
6.1 Introduction to Membrane Desalination Technologies |
|
|
155 | (1) |
|
|
155 | (24) |
|
6.2.1 Introduction to RO Membrane Technology |
|
|
155 | (2) |
|
|
157 | (2) |
|
6.2.3 Principles and Modeling of Membrane Systems |
|
|
159 | (1) |
|
6.2.3.1 Membrane recovery |
|
|
159 | (1) |
|
|
160 | (1) |
|
|
160 | (1) |
|
6.2.3.4 Membrane permeation coefficient (A) and salt transport coefficient (B) |
|
|
161 | (1) |
|
6.2.3.5 Membrane rejection |
|
|
161 | (1) |
|
6.2.3.6 Trans-Membrane Pressure (TMP) |
|
|
161 | (1) |
|
6.2.3.7 Net Driving Pressure (NDP) |
|
|
162 | (1) |
|
|
162 | (1) |
|
6.2.3.9 Langelier Saturation Index (LSI) |
|
|
162 | (1) |
|
6.2.3.10 Silt Density Index (SDI) |
|
|
163 | (1) |
|
6.2.4 RO Separation System Design |
|
|
164 | (3) |
|
6.2.5 Restrictions of Membrane Application in Desalination |
|
|
167 | (2) |
|
6.2.6 Concentration Polarization in Membrane Desalination |
|
|
169 | (2) |
|
6.2.7 RO Membrane Pretreatment |
|
|
171 | (1) |
|
6.2.8 RO Membrane Chemical Cleaning |
|
|
172 | (2) |
|
6.2.9 RO Projection Software |
|
|
174 | (5) |
|
|
179 | (9) |
|
6.3.1 Introduction to FO Membrane Technology |
|
|
179 | (2) |
|
6.3.2 Forward Osmosis Membranes and Modules |
|
|
181 | (3) |
|
6.3.3 Draw Solutions for the FO Process |
|
|
184 | (1) |
|
6.3.4 CP in FO Processes and FO Membrane Fouling |
|
|
184 | (2) |
|
6.3.5 Advantages and Disadvantages of the FO Process |
|
|
186 | (2) |
|
6.4 Electrodialysis (ED) and Electodialysis Reversal (EDR) |
|
|
188 | (8) |
|
6.4.1 Introduction to ED and EDR Technologies |
|
|
188 | (1) |
|
6.4.2 ED/EDR Process Design |
|
|
189 | (2) |
|
|
191 | (2) |
|
|
193 | (1) |
|
|
194 | (1) |
|
6.4.6 Comparison between ED/EDR and RO |
|
|
195 | (1) |
|
|
196 | (5) |
|
|
201 | (36) |
|
|
|
201 | (3) |
|
7.2 Overview of Granular Media Filtration Technologies |
|
|
204 | (3) |
|
7.3 Seawater Conditioning Prior to Granular Filtration |
|
|
207 | (3) |
|
7.4 Seawater Pretreatment Prior to Filtration |
|
|
210 | (5) |
|
|
210 | (1) |
|
7.4.2 Dissolved Air Flotation |
|
|
211 | (4) |
|
7.5 Selection of Granular Filter Media |
|
|
215 | (1) |
|
7.6 Selection of the Type of Granular Media Filter |
|
|
216 | (5) |
|
7.6.1 Removal of Algal Material from Seawater |
|
|
218 | (2) |
|
7.6.2 Useful Life of the Filter Structure |
|
|
220 | (1) |
|
7.6.3 Solids Retention Capacity and Handling of Turbidity Spikes |
|
|
220 | (1) |
|
|
220 | (1) |
|
7.7 Membrane Filtration Overview |
|
|
221 | (8) |
|
7.7.1 Seawater Conditioning and Pretreatment Prior to Membrane Filtration |
|
|
226 | (2) |
|
7.7.2 Considerations for Selecting Between OF and MF Pretreatment |
|
|
228 | (1) |
|
7.8 Considerations for Selecting Between Pressure and Vacuum-Driven Membrane Filtration |
|
|
229 | (1) |
|
7.8.1 Source Water Quality Variations |
|
|
229 | (1) |
|
7.8.2 Construction Costs and Energy Requirements |
|
|
230 | (1) |
|
7.9 Lessons Learned from Existing MF/UF Systems |
|
|
230 | (3) |
|
|
233 | (1) |
|
|
233 | (4) |
|
|
237 | (28) |
|
|
|
|
|
237 | (2) |
|
8.2 Post-Treatment Processes |
|
|
239 | (10) |
|
|
239 | (2) |
|
8.2.2 Direct Dosage of Chemicals |
|
|
241 | (1) |
|
8.2.2.1 Design Considerations for Ca(OH)2 + CO2 Systems |
|
|
242 | (1) |
|
8.2.3 Limestone (Calcium Carbonate) Dissolution |
|
|
243 | (4) |
|
8.2.4 Dolomite Dissolution |
|
|
247 | (2) |
|
|
249 | (11) |
|
|
252 | (1) |
|
8.3.2 Comparison of Various Disinfection Methods |
|
|
253 | (1) |
|
8.3.3 Residual Disinfection |
|
|
253 | (5) |
|
8.3.4 Disinfectant Decay Kinetics |
|
|
258 | (2) |
|
|
260 | (1) |
|
|
260 | (5) |
Part III: Science and Technology |
|
|
9 The Origins of Today's Desalination Technologies |
|
|
265 | (30) |
|
|
|
265 | (2) |
|
9.2 The First Tentative Steps |
|
|
267 | (4) |
|
9.3 The Appearance of an Industry in the 1800s |
|
|
271 | (6) |
|
9.4 The Early Twentieth Century-Evaporative Advancements |
|
|
277 | (3) |
|
9.5 The Early Twentieth Century: Membrane Developments |
|
|
280 | (1) |
|
9.5.1 The Influence of World War II |
|
|
281 | (1) |
|
|
281 | (4) |
|
|
285 | (5) |
|
|
290 | (1) |
|
|
290 | (5) |
|
10 Research and Development Management |
|
|
295 | (28) |
|
|
|
|
295 | (4) |
|
|
299 | (3) |
|
|
302 | (2) |
|
|
304 | (6) |
|
|
310 | (2) |
|
|
312 | (2) |
|
|
314 | (2) |
|
10.8 The Business Aspect: Costs, Revenue, Profit |
|
|
316 | (2) |
|
|
318 | (2) |
|
|
320 | (3) |
|
11 Membrane Chemistry and Engineering |
|
|
323 | (32) |
|
|
|
|
|
|
|
323 | (2) |
|
|
325 | (5) |
|
11.2.1 Reverse Osmosis (RO) |
|
|
326 | (1) |
|
11.2.1.1 RO membrane made by phase inversion |
|
|
326 | (1) |
|
11.2.1.2 RO membranes made by interfacial polymerization |
|
|
328 | (2) |
|
|
330 | (7) |
|
11.3.1 Forward Osmosis (FO) |
|
|
332 | (1) |
|
11.3.2 Electrodialysis (ED) and Related Processes |
|
|
333 | (2) |
|
11.3.3 Membrane Distillation (MD) |
|
|
335 | (1) |
|
11.3.4 Microfiltration and Ultrafiltration |
|
|
336 | (1) |
|
|
337 | (10) |
|
11.4.1 Membrane Configurations |
|
|
337 | (2) |
|
11.4.2 Flow Path Considerations |
|
|
339 | (2) |
|
11.4.3 Module Configurations |
|
|
341 | (6) |
|
|
347 | (3) |
|
|
350 | (5) |
|
12 State-of-the-Art Desalination Research |
|
|
355 | (30) |
|
|
|
|
|
355 | (1) |
|
|
356 | (2) |
|
12.3 Current State-of-the-Art Materials for Novel Membrane-Based Processes |
|
|
358 | (6) |
|
12.4 Forward Osmosis (FO) |
|
|
364 | (1) |
|
|
365 | (1) |
|
12.6 Thermal-Based Processes |
|
|
366 | (3) |
|
12.6.1 Membrane Distillation |
|
|
366 | (1) |
|
12.6.2 Pervaporation (PV) |
|
|
367 | (2) |
|
12.7 Novel Electrically-Driven Processes |
|
|
369 | (8) |
|
12.7.1 Capacitive Deionization (CDI) |
|
|
369 | (1) |
|
12.7.2 Microbial Desalination Cell (MDC) |
|
|
370 | (7) |
|
|
377 | (8) |
Part IV: Energy and Environment |
|
|
13 Desalination Powered by Renewable and Nuclear Energy Sources |
|
|
385 | (30) |
|
|
13.1 Desalination Technologies and Renewable Energy Coupling Schemes |
|
|
385 | (2) |
|
|
387 | (1) |
|
13.3 Solar Energy for Desalination |
|
|
388 | (7) |
|
13.3.1 Direct Solar Desalination: Solar Stills |
|
|
390 | (1) |
|
13.3.2 Indirect Solar Desalination Using Solar Collectors |
|
|
391 | (2) |
|
|
393 | (2) |
|
13.4 Wind Energy for Desalination |
|
|
395 | (3) |
|
13.5 Geothermal Energy for Desalination |
|
|
398 | (3) |
|
13.6 Wave Energy for Desalination |
|
|
401 | (3) |
|
13.7 Nuclear Energy for Desalination |
|
|
404 | (4) |
|
13.7.1 Experience with Nuclear Desalination |
|
|
406 | (2) |
|
13.8 Conclusion and Selection Criteria |
|
|
408 | (2) |
|
|
410 | (5) |
|
14 Energy Consumption and Minimization |
|
|
415 | (38) |
|
|
|
|
|
415 | (1) |
|
14.2 Energy Issues in Desalination |
|
|
415 | (5) |
|
14.2.1 Interrelation between Water and Energy |
|
|
415 | (2) |
|
14.2.2 Energy Demand for Desalination |
|
|
417 | (3) |
|
14.3 SEC in Membrane-Based Processes |
|
|
420 | (13) |
|
14.3.1 Energy Consumption in RO Desalination |
|
|
420 | (2) |
|
14.3.2 Technological Improvements to Minimize Losses and to Increase Energy Recovery |
|
|
422 | (1) |
|
14.3.2.1 High efficiency pumps |
|
|
424 | (1) |
|
14.3.2.2 Energy recovery devices |
|
|
424 | (1) |
|
14.3.2.3 New generation membranes |
|
|
426 | (1) |
|
14.3.2.4 Plant design and operation |
|
|
428 | (1) |
|
14.3.2.5 Development of novel energy-efficient desalination technologies |
|
|
429 | (1) |
|
14.3.2.6 Utilization of renewable energies |
|
|
433 | (1) |
|
14.4 SEC in Thermal Processes |
|
|
433 | (4) |
|
14.4.1 Technological Improvements to Increase Energy Efficiency |
|
|
435 | (1) |
|
14.4.2 Dual-Purpose Power-Desalting Water Plants |
|
|
436 | (1) |
|
14.5 SEC in Hybrid Systems |
|
|
437 | (2) |
|
14.6 Renewable Energy (RE) Utilization for Water Desalination |
|
|
439 | (2) |
|
14.7 Conclusions and Future R&D |
|
|
441 | (1) |
|
|
442 | (11) |
|
|
453 | (36) |
|
|
|
453 | (1) |
|
15.2 Desalination Brine/Concentrate Characteristics and Disposal |
|
|
454 | (5) |
|
15.2.1 Seawater Desalination |
|
|
455 | (1) |
|
15.2.2 Brackish Water Desalination |
|
|
456 | (1) |
|
15.2.3 Desalination for Potable Water Reuse |
|
|
457 | (2) |
|
15.3 Technologies for Brine/Concentrate Treatment |
|
|
459 | (9) |
|
15.3.1 Reverse Osmosis and Nanofiltration |
|
|
459 | (1) |
|
15.3.2 Electrodialysis and Electrodialysis Reversal |
|
|
460 | (2) |
|
15.3.3 Evaporation Ponds and Solar Evaporation |
|
|
462 | (1) |
|
15.3.4 Distillation and Evaporation Systems |
|
|
463 | (1) |
|
15.3.5 Membrane Distillation/Crystallization |
|
|
464 | (1) |
|
15.3.6 Precipitation and Crystallization |
|
|
465 | (2) |
|
|
467 | (1) |
|
15.3.8 Other Notable Processes |
|
|
468 | (1) |
|
15.4 Implementation of Brine/Concentrate Minimization |
|
|
468 | (4) |
|
15.5 Extraction of Constituents from Brine/Concentrate |
|
|
472 | (8) |
|
|
472 | (1) |
|
|
472 | (1) |
|
15.5.3 Chlorine and Sodium Hydroxide |
|
|
473 | (1) |
|
|
474 | (1) |
|
|
474 | (2) |
|
15.5.6 Nitrogen and Phosphorous |
|
|
476 | (1) |
|
|
477 | (1) |
|
|
478 | (1) |
|
15.5.9 Other Notable Commodities |
|
|
479 | (1) |
|
15.5.10 Economic Considerations |
|
|
480 | (1) |
|
|
480 | (1) |
|
|
481 | (8) |
|
16 Environmental Impacts of Desalination Plants |
|
|
489 | (42) |
|
|
|
489 | (2) |
|
|
491 | (2) |
|
16.2.1 Aesthetics and Water Stability |
|
|
491 | (1) |
|
|
492 | (1) |
|
16.2.3 Nutritionally Desirable Components |
|
|
492 | (1) |
|
16.2.4 Chemicals and Materials Used in Water Production |
|
|
492 | (1) |
|
|
493 | (1) |
|
16.4 Environmental Impacts |
|
|
493 | (20) |
|
16.4.1 Seawater Intakes and Pretreatment |
|
|
494 | (1) |
|
|
494 | (1) |
|
|
496 | (1) |
|
16.4.2 Reject Streams and Outfalls (Impact of Brine Discharge) |
|
|
497 | (1) |
|
|
504 | (1) |
|
|
505 | (1) |
|
16.4.2.3 Antifouling additives |
|
|
506 | (1) |
|
16.4.2.4 Residual biocides |
|
|
506 | (1) |
|
|
508 | (1) |
|
|
508 | (1) |
|
|
509 | (1) |
|
16.4.2.8 Antifoaming agents (Thermal plants only) |
|
|
511 | (1) |
|
16.4.2.9 Cleaning chemicals |
|
|
511 | (1) |
|
16.4.3 Air Quality Impacts |
|
|
512 | (1) |
|
16.5 Mitigating the Impact of Desalination on the Environment |
|
|
513 | (3) |
|
16.5.1 Source Water Intake |
|
|
513 | (1) |
|
|
514 | (1) |
|
|
515 | (1) |
|
16.5.4 Site Selection for Impact Mitigation |
|
|
516 | (1) |
|
16.6 Avoiding Possible Disturbances |
|
|
516 | (1) |
|
16.7 Life Cycle Assessment of Desalination Technologies |
|
|
517 | (3) |
|
|
517 | (1) |
|
16.7.1.1 Phase 1: Goal and scope definition |
|
|
518 | (1) |
|
16.7.1.2 Phase 2: Life cycle inventory |
|
|
519 | (1) |
|
16.7.1.3 Phase 3: Life cycle impact assessment |
|
|
519 | (1) |
|
16.7.1.4 Phase 4: Interpretation |
|
|
519 | (1) |
|
16.7.2 Main Results from Desalination LCA Studies |
|
|
519 | (1) |
|
|
520 | (6) |
|
|
526 | (5) |
Part V: Social and Commercial Issues |
|
|
|
531 | (28) |
|
|
|
|
531 | (3) |
|
17.2 Factors that Affect the Success of Rural Desalination Systems |
|
|
534 | (16) |
|
|
535 | (1) |
|
|
535 | (1) |
|
|
536 | (3) |
|
17.2.4 Technological Factors |
|
|
539 | (3) |
|
|
542 | (1) |
|
17.2.5.1 Community involvement |
|
|
542 | (1) |
|
17.2.5.2 Institutions and social power |
|
|
544 | (1) |
|
|
544 | (1) |
|
|
545 | (1) |
|
17.2.5.5 Religious issues |
|
|
547 | (1) |
|
|
548 | (2) |
|
|
550 | (3) |
|
17.3.1 Case Study of an Unsuccessful Project: Solar Stills on the Greek Island of Kimolos |
|
|
550 | (1) |
|
17.3.1.1 Case study of a successful project: Photovoltaic reverse osmosis in Ksar Ghilene, Tunisia |
|
|
551 | (2) |
|
|
553 | (6) |
|
18 Society, Politics, and Desalination |
|
|
559 | (16) |
|
|
|
559 | (1) |
|
18.2 Separating and Mixing Water |
|
|
560 | (3) |
|
18.2.1 Political Groups and Separate Waters |
|
|
561 | (2) |
|
18.3 Social Groups and Collective Costs and Benefits |
|
|
563 | (1) |
|
18.4 Society, Politics, and Technology |
|
|
564 | (1) |
|
18.5 Examples of Harmful and Helpful Desalination |
|
|
565 | (5) |
|
18.5.1 Israel and Singapore |
|
|
565 | (3) |
|
18.5.2 San Diego and Monterey |
|
|
568 | (1) |
|
18.5.3 Saudi Arabia and United Arab Emirates |
|
|
569 | (1) |
|
18.6 Desalination without Regret |
|
|
570 | (1) |
|
|
571 | (4) |
|
19 Desalination Costs and Economic Feasibility |
|
|
575 | (22) |
|
|
|
575 | (2) |
|
19.2 Definition and Breakdown of Desalination Costs |
|
|
577 | (8) |
|
|
577 | (3) |
|
19.2.2 Operational and Maintenance Costs |
|
|
580 | (1) |
|
|
582 | (1) |
|
|
583 | (2) |
|
19.3 Determining the Final Cost and Price of Desalinated Water |
|
|
585 | (6) |
|
19.4 Predictions about Future Desalination Costs |
|
|
591 | (1) |
|
|
592 | (5) |
|
20 The Business of Desalination |
|
|
597 | (48) |
|
|
|
|
597 | (5) |
|
|
602 | (6) |
|
20.2.1 The Middle East and North Africa (MENA) |
|
|
604 | (1) |
|
|
605 | (1) |
|
|
606 | (1) |
|
|
606 | (1) |
|
20.2.5 Sub-Saharan Africa |
|
|
607 | (1) |
|
20.3 Technology and Energy |
|
|
608 | (3) |
|
20.3.1 Equipment and Innovation |
|
|
610 | (1) |
|
20.4 Finance and Companies |
|
|
611 | (5) |
|
20.4.1 Desalination Companies |
|
|
614 | (1) |
|
|
615 | (1) |
|
|
616 | (26) |
|
|
642 | (3) |
Index |
|
645 | (14) |
About the Editor |
|
659 | |